Piecewise polynomial functions, convex polytopes and enumerative geometry

Michel Brion

Banach Center Publications (1996)

  • Volume: 36, Issue: 1, page 25-44
  • ISSN: 0137-6934

How to cite

top

Brion, Michel. "Piecewise polynomial functions, convex polytopes and enumerative geometry." Banach Center Publications 36.1 (1996): 25-44. <http://eudml.org/doc/208580>.

@article{Brion1996,
author = {Brion, Michel},
journal = {Banach Center Publications},
keywords = {piecewise polynomial functions; convex polytopes; enumerative geometry; Bezout theorem; Chow rings; toric varieties; spherical homogeneous space; polytope algebra},
language = {eng},
number = {1},
pages = {25-44},
title = {Piecewise polynomial functions, convex polytopes and enumerative geometry},
url = {http://eudml.org/doc/208580},
volume = {36},
year = {1996},
}

TY - JOUR
AU - Brion, Michel
TI - Piecewise polynomial functions, convex polytopes and enumerative geometry
JO - Banach Center Publications
PY - 1996
VL - 36
IS - 1
SP - 25
EP - 44
LA - eng
KW - piecewise polynomial functions; convex polytopes; enumerative geometry; Bezout theorem; Chow rings; toric varieties; spherical homogeneous space; polytope algebra
UR - http://eudml.org/doc/208580
ER -

References

top
  1. [1] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28. Zbl0521.58025
  2. [2] D. N. Bernstein, The number of roots of a system of equations, Functional Anal. Appl. 9 (1975), 183-185. 
  3. [3] E. Bifet, Cohomology, symmetry, and perfection, Publ. Mat. 36 (1992), 407-420. Zbl0809.14040
  4. [4] E. Bifet, C. DeConcini and C. Procesi, Cohomology of regular embeddings, Adv. Math. 82 (1990), 1-34. Zbl0743.14018
  5. [5] L. J. Billera, The algebra of piecewise polynomial functions, Adv. Math. 76 (1989), 170-183. Zbl0703.13015
  6. [6] L. J. Billera and L. L. Rose, Modules of piecewise polynomial functions and their freeness, Math. Z. 209 (1992), 485-497. Zbl0891.13004
  7. [7] M. Brion, Points entiers dans les polyèdres convexes, Ann. Scient. École Norm. Sup. (4) 21 (1988), 653-663. 
  8. [8] M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J. 58 (1989), 397-424. Zbl0701.14052
  9. [9] E. Casas-Alvero and S. Xambó-Descamps, The Enumerative Theory of Conics after Halphen, Lecture Notes in Math. 1196, Springer, Berlin, 1986. Zbl0626.14037
  10. [10] C. DeConcini and C. Procesi, Complete symmetric varieties II, in: Algebraic Groups and Related Topics, R. Hotta (ed.), Kinokuniya, Tokyo, 1985, 481-514. 
  11. [11] A. Grothendieck and J. Dieudonné, Elements de géométrie algébrique I, Inst. Hautes Études Sci. Publ. Math. 4 (1960). 
  12. [12] W. Fulton, Intersection theory, Springer, Berlin, 1984. Zbl0541.14005
  13. [13] W. Fulton, Introduction to toric varieties, Princeton University Press, 1993. Zbl0813.14039
  14. [14] W. Fulton and B. Sturmfels, Intersection theory on toric varieties, preprint 1994. 
  15. [15] A. Hirschowitz, L'anneau de Chow équivariant, C. R. Acad. Sci. Paris Série I, 298 (1984), 87-89. 
  16. [16] B. Y. Kazarnovskii, Newton polyhedra and the Bézout theorem for matrix-valued functions of finite-dimensional representations, Functional Anal. Appl. 21 (1987), 319-321. 
  17. [17] F. Knop, The Luna-Vust theory of spherical embeddings, in: Proceedings of the Hyderabad conference on algebraic groups, S. Ramanan (ed.), Manoj-Prakashan, Madras, 1991, 225-250. Zbl0812.20023
  18. [18] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31. 
  19. [19] P. McMullen, The polytope algebra, Adv. Math. 78 (1989), 76-130. Zbl0686.52005
  20. [20] P. McMullen, Valuations and dissections, in: Handbook of convex geometry, Volume B, P. Gruber and J. Wills (eds.), North-Holland, 1993, 933-988. Zbl0791.52014
  21. [21] R. Morelli, A theory of polyhedra, Adv. Math. 97 (1993), 1-73. Zbl0779.52016
  22. [22] R. Morelli, The K-theory of a toric variety, Adv. Math. 100 (1993), 154-182. Zbl0805.14025
  23. [23] C. Procesi and S. Xambó-Descamps, On Halphen's first formula, in: Enumerative algebraic geometry (Copenhagen, 1989), Contemp. Math. 123 (1991), 199-211. 
  24. [24] A. V. Pukhlikov and A. G. Khovanskii, Finitely additive measures of virtual polytopes, St. Petersburg Math. J. 4 (1993), 337-356. Zbl0791.52010
  25. [25] R. P. Stanley, Combinatorics and commutative algebra, Birkhäuser, Basel, 1983. Zbl0537.13009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.