Particles, phases, fields
L. Wojtczak; A. Urbaniak-Kucharczyk; I. Zasada; J. Rutkowski
Banach Center Publications (1996)
- Volume: 37, Issue: 1, page 351-360
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topWojtczak, L., et al. "Particles, phases, fields." Banach Center Publications 37.1 (1996): 351-360. <http://eudml.org/doc/208613>.
@article{Wojtczak1996,
abstract = {The physical properties of particles and phasesare considered in connection with their description by means of the deformation of space-time. The analogy between particle trajectories and phase boundaries is discussed. The geometry and its curvature is related to the Clifford algebraic structure whose construction in terms of the theory of deformation leads to the expected solutions for correlation functions referring to spectroscopy and scattering problems. The stochastic nature of space-time is reflected by fluctuations of distances and time intervals.},
author = {Wojtczak, L., Urbaniak-Kucharczyk, A., Zasada, I., Rutkowski, J.},
journal = {Banach Center Publications},
keywords = {deformation of space-time; particle trajectories; phase boundaries; curvature; Clifford algebraic structure; spectroscopy; scattering problems},
language = {eng},
number = {1},
pages = {351-360},
title = {Particles, phases, fields},
url = {http://eudml.org/doc/208613},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Wojtczak, L.
AU - Urbaniak-Kucharczyk, A.
AU - Zasada, I.
AU - Rutkowski, J.
TI - Particles, phases, fields
JO - Banach Center Publications
PY - 1996
VL - 37
IS - 1
SP - 351
EP - 360
AB - The physical properties of particles and phasesare considered in connection with their description by means of the deformation of space-time. The analogy between particle trajectories and phase boundaries is discussed. The geometry and its curvature is related to the Clifford algebraic structure whose construction in terms of the theory of deformation leads to the expected solutions for correlation functions referring to spectroscopy and scattering problems. The stochastic nature of space-time is reflected by fluctuations of distances and time intervals.
LA - eng
KW - deformation of space-time; particle trajectories; phase boundaries; curvature; Clifford algebraic structure; spectroscopy; scattering problems
UR - http://eudml.org/doc/208613
ER -
References
top- [1] F. L. Castillo-Alvarado, G. Contreras-Puente, J. Ławrynowicz and L. Wojtczak, A Hurwitz-Pair Approach to the Premelting Problem, in: Deformations of Mathematical Structures, J. Ławrynowicz (ed.), Kluwer Academic Publishers, Netherlands, 1994, 289-298.
- [2] Yu. P. Gnatenko, J. H. Rutkowski and G. Contreras-Puente, Optical spectra of CdTe crystals doped with Co atoms, Bull. Soc. Sci. Lettres Łódź, Sér. Réch. Deform., (submitted for publication).
- [3] H. Haken, Synergetics, An Introduction, Nonequilibrium Phase Transitions and Self Organization in Physics, Chemistry and Biology, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. Zbl0523.93001
- [4] J. Kociński and L. Wojtczak, Critical Scattering Theory. An Introduction, Phase Transition Phenomena 1, Elsevier Scientific Publ. Co.-PWN, Amsterdam, Oxford, New York, Warszawa, 1978.
- [5] J. Ławrynowicz, J. Avendano-Lopez, F. L. Castillo-Alvarado, R. A. Barrio and A. Urbaniak-Kucharczyk, Clifford analysis, Riemannian geometry and the electromagnetic field, in: Essays on the Formal Aspects of Electromagnetic Theory, A. Lakhtakia (ed.), World Scientific Publ. Co., 1993, pp. 533-558.
- [6] J. Ławrynowicz and L. Wojtczak in cooperation with S. Koshi and O. Suzuki, Stochastic mechanics of particle systems in Cliford-analytical formulation related to Hurwitz pairs of bidimension (8, 5), in: Deformations of Mathematical Structures, J. Ławrynowicz (ed.), Kluwer Academic Publishers, Netherlands, 1994, 213-262.
- [7] J. C. Le Bossé, J. J. Lopez, J. Rousseau, I. Zasada and L. Wojtczak, Statistical aspects of the diffuse LEED problem, J. Phys.: Condens. Matter, 2, (1990), 3143-3165.
- [8] R. Lipowsky and W. Speth, Semi-infinite systems with first-order bulk transitions, Phys. Rev. B28 No. 7, (1983), 3983-3993.
- [9] B. Pluis, D. Frenkel and J. F. van der Veen, Surface-induced melting and freezing II. A semiempirical Landau-type model, Surf. Sci., 239, (1990), 282-300.
- [10] J. Rembieliński and K. Smoliński, Non-commutative quantum dynamics, Modern Physics Letters A, No. 35 8, (1993), 3335-3343. Zbl1021.81581
- [11] A. Urbaniak-Kucharczyk, Spin polarization transport in thin magnetic film, in: Deformations of Mathematical Structure, J. Ławrynowicz (ed.), Kluwer Academic Publ., Netherlands, 1994, 327-340. Zbl0826.60095
- [12] I. Zasada and L. Wojtczak, Topological correlations in the surface melting conditions, Bull. Soc. Sci. Lettres Łódź, Sér. Rech. Déform. 18, (1995), 93-108.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.