A note on singularities at infinity of complex polynomials
Banach Center Publications (1997)
- Volume: 39, Issue: 1, page 131-141
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topParusiński, Adam. "A note on singularities at infinity of complex polynomials." Banach Center Publications 39.1 (1997): 131-141. <http://eudml.org/doc/208656>.
@article{Parusiński1997,
abstract = {Let f be a complex polynomial. We relate the behaviour of f “at infinity” to the sheaf of vanishing cycles of the family $\overline\{f\}$ of projective closures of fibres of f. We show that the absence of such cycles: (i) is equivalent to a condition on the asymptotic behaviour of gradient of f known as Malgrange’s Condition, (ii) implies the $C^\infty $-triviality of f. If the support of sheaf of vanishing cycles of $\overline\{f\}$ is a finite set, then it detects precisely the change of the topology of the fibres of f. Moreover, in this case, the generic fibre of f has the homotopy type of a bouquet of spheres.},
author = {Parusiński, Adam},
journal = {Banach Center Publications},
keywords = {bifurcation set; vanishing cycles; Malgrange condition},
language = {eng},
number = {1},
pages = {131-141},
title = {A note on singularities at infinity of complex polynomials},
url = {http://eudml.org/doc/208656},
volume = {39},
year = {1997},
}
TY - JOUR
AU - Parusiński, Adam
TI - A note on singularities at infinity of complex polynomials
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 131
EP - 141
AB - Let f be a complex polynomial. We relate the behaviour of f “at infinity” to the sheaf of vanishing cycles of the family $\overline{f}$ of projective closures of fibres of f. We show that the absence of such cycles: (i) is equivalent to a condition on the asymptotic behaviour of gradient of f known as Malgrange’s Condition, (ii) implies the $C^\infty $-triviality of f. If the support of sheaf of vanishing cycles of $\overline{f}$ is a finite set, then it detects precisely the change of the topology of the fibres of f. Moreover, in this case, the generic fibre of f has the homotopy type of a bouquet of spheres.
LA - eng
KW - bifurcation set; vanishing cycles; Malgrange condition
UR - http://eudml.org/doc/208656
ER -
References
top- [BMM] J. Briançon, Ph. Maisonobe, M. Merle, Localization de systèmes différentiels, stratifications de Whitney et condition de Thom, Invent. Math. 117 (1994), 531-550.
- [Br] J. L. Brylinski, (Co)-Homologie d'intersection et faisceaux pervers, Seminaire Bourbaki 585 (1981-82), Astérisque 92-93 (1982), 129-157.
- [BDK] J. L. Brylinski, A. Dubson, M. Kashiwara, Formule de l'indice pour les modules holonomes et obstruction d'Euler locale, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 129-132. Zbl0492.58021
- [Di] A. Dimca, Singularities and Topology of Hypersurfaces, Universitex, Springer, New York, Berlin, Heidelberg, 1992. Zbl0753.57001
- [Hà] H. V. Hà, Nombres de Łojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 429-432.
- [Hà-Lê] H. V. Hà, D. T. Lê, Sur la topologie des polynômes complexes, Acta Math. Vietnam. 9 (1984), 21-32.
- [Hm-Lê] H. Hamm, D. T. Lê, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. (4) 6 (1973), 317-355.
- [HMS] J. P. Henry, M. Merle, C. Sabbah, Sur la condition de Thom stricte pour un morphisme analytique complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), 227-268. Zbl0551.32012
- [Ł] S. Łojasiewicz, Ensembles semi-analytiques, preprint, IHES, 1965.
- [LM] D. T. Lê, Z. Mebkhout, Variétés caractéristiques et variétés polaires, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 129-132. Zbl0566.32020
- [MM] Ph. Maisonobe, M. Merle, in preparation.
- [Pa] A. Parusiński, On the bifurcation set of a complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384. Zbl0840.32007
- [Ph] F. Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss- Manin, Astérisque 130 (1985), 11-47.
- [Sa] C. Sabbah, Quelques Remarques sur la Géométrie des Espaces Conormaux, Astérisque 130 (1985), 161-192.
- [S-T] D. Siersma, M. Tibăr, Singularities at infinity and their vanishing cycles, Duke Math. J. 80 (1995), 771-783. Zbl0871.32024
- [Z] A. Zaharia, On the bifurcation set of a polynomial function and Newton boundary, II, Université de Bordeaux, preprint (1995). Zbl0867.32013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.