A note on singularities at infinity of complex polynomials

Adam Parusiński

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 131-141
  • ISSN: 0137-6934

Abstract

top
Let f be a complex polynomial. We relate the behaviour of f “at infinity” to the sheaf of vanishing cycles of the family f ¯ of projective closures of fibres of f. We show that the absence of such cycles: (i) is equivalent to a condition on the asymptotic behaviour of gradient of f known as Malgrange’s Condition, (ii) implies the C -triviality of f. If the support of sheaf of vanishing cycles of f ¯ is a finite set, then it detects precisely the change of the topology of the fibres of f. Moreover, in this case, the generic fibre of f has the homotopy type of a bouquet of spheres.

How to cite

top

Parusiński, Adam. "A note on singularities at infinity of complex polynomials." Banach Center Publications 39.1 (1997): 131-141. <http://eudml.org/doc/208656>.

@article{Parusiński1997,
abstract = {Let f be a complex polynomial. We relate the behaviour of f “at infinity” to the sheaf of vanishing cycles of the family $\overline\{f\}$ of projective closures of fibres of f. We show that the absence of such cycles: (i) is equivalent to a condition on the asymptotic behaviour of gradient of f known as Malgrange’s Condition, (ii) implies the $C^\infty $-triviality of f. If the support of sheaf of vanishing cycles of $\overline\{f\}$ is a finite set, then it detects precisely the change of the topology of the fibres of f. Moreover, in this case, the generic fibre of f has the homotopy type of a bouquet of spheres.},
author = {Parusiński, Adam},
journal = {Banach Center Publications},
keywords = {bifurcation set; vanishing cycles; Malgrange condition},
language = {eng},
number = {1},
pages = {131-141},
title = {A note on singularities at infinity of complex polynomials},
url = {http://eudml.org/doc/208656},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Parusiński, Adam
TI - A note on singularities at infinity of complex polynomials
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 131
EP - 141
AB - Let f be a complex polynomial. We relate the behaviour of f “at infinity” to the sheaf of vanishing cycles of the family $\overline{f}$ of projective closures of fibres of f. We show that the absence of such cycles: (i) is equivalent to a condition on the asymptotic behaviour of gradient of f known as Malgrange’s Condition, (ii) implies the $C^\infty $-triviality of f. If the support of sheaf of vanishing cycles of $\overline{f}$ is a finite set, then it detects precisely the change of the topology of the fibres of f. Moreover, in this case, the generic fibre of f has the homotopy type of a bouquet of spheres.
LA - eng
KW - bifurcation set; vanishing cycles; Malgrange condition
UR - http://eudml.org/doc/208656
ER -

References

top
  1. [BMM] J. Briançon, Ph. Maisonobe, M. Merle, Localization de systèmes différentiels, stratifications de Whitney et condition de Thom, Invent. Math. 117 (1994), 531-550. 
  2. [Br] J. L. Brylinski, (Co)-Homologie d'intersection et faisceaux pervers, Seminaire Bourbaki 585 (1981-82), Astérisque 92-93 (1982), 129-157. 
  3. [BDK] J. L. Brylinski, A. Dubson, M. Kashiwara, Formule de l'indice pour les modules holonomes et obstruction d'Euler locale, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 129-132. Zbl0492.58021
  4. [Di] A. Dimca, Singularities and Topology of Hypersurfaces, Universitex, Springer, New York, Berlin, Heidelberg, 1992. Zbl0753.57001
  5. [Hà] H. V. Hà, Nombres de Łojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 429-432. 
  6. [Hà-Lê] H. V. Hà, D. T. Lê, Sur la topologie des polynômes complexes, Acta Math. Vietnam. 9 (1984), 21-32. 
  7. [Hm-Lê] H. Hamm, D. T. Lê, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. (4) 6 (1973), 317-355. 
  8. [HMS] J. P. Henry, M. Merle, C. Sabbah, Sur la condition de Thom stricte pour un morphisme analytique complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), 227-268. Zbl0551.32012
  9. [Ł] S. Łojasiewicz, Ensembles semi-analytiques, preprint, IHES, 1965. 
  10. [LM] D. T. Lê, Z. Mebkhout, Variétés caractéristiques et variétés polaires, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 129-132. Zbl0566.32020
  11. [MM] Ph. Maisonobe, M. Merle, in preparation. 
  12. [Pa] A. Parusiński, On the bifurcation set of a complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384. Zbl0840.32007
  13. [Ph] F. Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss- Manin, Astérisque 130 (1985), 11-47. 
  14. [Sa] C. Sabbah, Quelques Remarques sur la Géométrie des Espaces Conormaux, Astérisque 130 (1985), 161-192. 
  15. [S-T] D. Siersma, M. Tibăr, Singularities at infinity and their vanishing cycles, Duke Math. J. 80 (1995), 771-783. Zbl0871.32024
  16. [Z] A. Zaharia, On the bifurcation set of a polynomial function and Newton boundary, II, Université de Bordeaux, preprint (1995). Zbl0867.32013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.