On the bifurcation set of complex polynomial with isolated singularities at infinity

Adam Parusiński

Compositio Mathematica (1995)

  • Volume: 97, Issue: 3, page 369-384
  • ISSN: 0010-437X

How to cite

top

Parusiński, Adam. "On the bifurcation set of complex polynomial with isolated singularities at infinity." Compositio Mathematica 97.3 (1995): 369-384. <http://eudml.org/doc/90389>.

@article{Parusiński1995,
author = {Parusiński, Adam},
journal = {Compositio Mathematica},
keywords = {Euler characteristic; -constant; bifurcation set; complex polynomial; isolated singularities at infinity},
language = {eng},
number = {3},
pages = {369-384},
publisher = {Kluwer Academic Publishers},
title = {On the bifurcation set of complex polynomial with isolated singularities at infinity},
url = {http://eudml.org/doc/90389},
volume = {97},
year = {1995},
}

TY - JOUR
AU - Parusiński, Adam
TI - On the bifurcation set of complex polynomial with isolated singularities at infinity
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 3
SP - 369
EP - 384
LA - eng
KW - Euler characteristic; -constant; bifurcation set; complex polynomial; isolated singularities at infinity
UR - http://eudml.org/doc/90389
ER -

References

top
  1. [Br1] Broughton, S.A.: On the topology of polynomial hypersurfaces, Proc. A.M.S. Symp. in Pure Math., Vol. 40, Part 1 (1983), 165-178. Zbl0526.14010MR713056
  2. [Br2] Broughton, S.A.: Milnor numbers and topology of polynomial hypersurfaces, Invent. Math.92 (1988), 217-241. Zbl0658.32005MR936081
  3. [BS] Briançon, J. and Speder, J.P.: Les conditions de Whitney impliquent μ* constant, Ann. Inst. Fourier (Grenoble) 26 (1976), 153-163. Zbl0331.32012
  4. [Di1] Dimca, A.: Singularities and Topology of Hypersurfaces, Universitex, Springer-Verlag, New York, Berlin, Heidelberg, 1992. Zbl0753.57001MR1194180
  5. [Di2] Dimca, A.: On the homology and cohomology of complete intersections with isolated singularities, Compositio Math.58 (1986), 321-339. Zbl0598.14017MR846909
  6. [F] Fedorjuk, M.V.: The asymptotics of the Fourier transform of the exponential function of a polynomial, Dokl. Akad. Nauk.227 (1976), 580-583 (Russian); English transl. in Soviet Math. Dokl. (2) 17 (1976), 486-490. Zbl0343.41030MR414914
  7. [Hà-Lê] Hà, H.V. and Lê, D.T.: Sur la topologie des polynômes complexes, Acta Math. Vietnamica9 (1984), 21-32. Zbl0597.32005MR796894
  8. [L-S] Lê, D.T. and Saito, K.: La constance du nombre de Milnor donne des bonnes stratifications, Compt. Rendus Acad. Sci. Paris, série A272 (1973), 793-795. Zbl0283.32007MR350063
  9. [Lo] Łojasiewicz, S.: Ensembles semi-analytiques, I.H.E.S., 1965. 
  10. [M] Milnor, J.: Singular points on complex hypersurfaces,Ann. of Math. Studies, 61, Princeton Univ. Press, Princeton, 1968. Zbl0184.48405MR239612
  11. [Né] Némethi, A.:Lefschetz theory for complex affine varieties, Rev. Roum. Math. Pures Appl.33 (1988), 233-260. Zbl0665.14003MR948160
  12. [Né-Z] Némethi, A. and Zaharia, A.: On the bifurcation set of a polynomial, Publ. RIMS. Kyoto Univ. 26 (1990), 681-689. Zbl0736.32024MR1081511
  13. [Pa] Parusiński, A.: A generalization of the Milnor number, Math. Ann.281 (1988), 247-254. Zbl0617.32012MR949831
  14. [Ph1] Pham, F.: La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, in Systèmes différentiels et singularités, Juin-Juillet 1983, Astérisque130 (1983), 11-47. Zbl0597.32012MR804048
  15. [Ph2] Pham, F.: Vanishing homologies and the n variables saddlepoint method, Proc. A.M.S. Symp. in Pure Math., Vol. 40, Part 2 (1983), 319-335. Zbl0519.49026MR713258
  16. [V] Verdier, J.L.: Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math.36 (1976), 295-312. Zbl0333.32010MR481096

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.