Seiberg-Witten Theory

Jürgen Eichhorn; Thomas Friedrich

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 231-267
  • ISSN: 0137-6934

Abstract

top
We give an introduction into and exposition of Seiberg-Witten theory.

How to cite

top

Eichhorn, Jürgen, and Friedrich, Thomas. "Seiberg-Witten Theory." Banach Center Publications 39.1 (1997): 231-267. <http://eudml.org/doc/208666>.

@article{Eichhorn1997,
abstract = {We give an introduction into and exposition of Seiberg-Witten theory.},
author = {Eichhorn, Jürgen, Friedrich, Thomas},
journal = {Banach Center Publications},
keywords = {Seiberg-Witten equations; structures; Thom conjecture},
language = {eng},
number = {1},
pages = {231-267},
title = {Seiberg-Witten Theory},
url = {http://eudml.org/doc/208666},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Eichhorn, Jürgen
AU - Friedrich, Thomas
TI - Seiberg-Witten Theory
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 231
EP - 267
AB - We give an introduction into and exposition of Seiberg-Witten theory.
LA - eng
KW - Seiberg-Witten equations; structures; Thom conjecture
UR - http://eudml.org/doc/208666
ER -

References

top
  1. [1] D. Auckley, Surgery, knots and the Seiberg-Witten equations, Preprint, Berkeley 1995. 
  2. [2] J. Eichhorn, Gauge theory on open manifolds of bounded geometry, Internat. J. Modern Phys. A 7 (1992), 3927-3977. 
  3. [3] J. Eichhorn, The manifold structure of maps between open manifolds, Ann. Global Anal. Geom. 11 (1993), 253-300. Zbl0840.58014
  4. [4] J. Eichhorn, Spaces of Riemannian metrics on open manifolds, Results Math. 27 (1995), 256-283. 
  5. [5] J. Eichhorn and G. Heber, The configuration space of gauge theory on open manifolds, to appear. Zbl0890.58002
  6. [6] D. Freed and K. Uhlenbeck, Instantons and four manifolds, Springer, New York 1984. 
  7. [7] F. Hirzebruch and H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172. Zbl0088.39403
  8. [8] N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1-55. Zbl0284.58016
  9. [9] A. Jaffe and C. Taubes, Vortices and Monopoles, Birkhäuser, Boston 1980. 
  10. [10] J. Jost, X. Peng and G. Wang, Variational aspects of the Seiberg-Witten functional, Preprint, Bochum 1995. Zbl0852.58020
  11. [11] D. Kotschick, J. Morgan and C. Taubes, Four manifolds without symplectic structures but with nontrivial Seiberg-Witten invariant, Math. Res. Lett. 2 (1995), 119-124. Zbl0853.57020
  12. [12] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797-808. Zbl0851.57023
  13. [13] J. Labastida and M. Marino, Non-abelian monopoles on four-manifolds, Preprint, Santiago de Compostela, 1995. Zbl1009.58501
  14. [14] B. Lawson and M. Michelson, Spin Geometry, Princeton University Press, Princeton 1989. 
  15. [15] C. LeBrun, Einstein metrics and Mostow rigidity, Math. Res. Lett. 2 (1995), 1-8. Zbl0974.53035
  16. [16] S. Rosenberg, Harmonic forms and -cohomology on manifolds with cylinders, Indiana Univ. Math. J. 34 (1985), 355-373. Zbl0556.57022
  17. [17] C. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), 809-822. Zbl0853.57019
  18. [18] C. Taubes, More constraints on symplectic manifolds from the Seiberg-Witten invariants, Math. Res. Lett. 2 (1995), 9-14. Zbl0854.57019
  19. [19] C. Taubes, The Seiberg-Witten and the Gromov invariants, Math. Res. Lett. 2 (1995), 221-238. Zbl0854.57020
  20. [20] C. Taubes, From the Seiberg-Witten equations to pseudo-holomorphic curves, Preprint, Harvard 1995. 
  21. [21] C. Taubes, Self-dual connections on non self-dual 4-manifolds, J. Differential Geom. 17 (1982), 139-170. Zbl0484.53026
  22. [22] R. Zhang, B. Wang and A. Carey, Topological quantum field theory and Seiberg-Witten monopoles, Preprint, Adelaide 1995. 

NotesEmbed ?

top

You must be logged in to post comments.