Skein algebra of a group

Józef Przytycki; Adam Sikora

Banach Center Publications (1998)

  • Volume: 42, Issue: 1, page 297-306
  • ISSN: 0137-6934

Abstract

top
We define for each group G the skein algebra of G. We show how it is related to the Kauffman bracket skein modules. We prove that skein algebras of abelian groups are isomorphic to symmetric subalgebras of corresponding group rings. Moreover, we show that, for any abelian group G, homomorphisms from the skein algebra of G to C correspond exactly to traces of SL(2,C)-representations of G. We also solve, for abelian groups, the conjecture of Bullock on SL(2,C) character varieties of groups - we show that skein algebras are isomorphic to the coordinate rings of the corresponding character varieties.

How to cite

top

Przytycki, Józef, and Sikora, Adam. "Skein algebra of a group." Banach Center Publications 42.1 (1998): 297-306. <http://eudml.org/doc/208813>.

@article{Przytycki1998,
abstract = {We define for each group G the skein algebra of G. We show how it is related to the Kauffman bracket skein modules. We prove that skein algebras of abelian groups are isomorphic to symmetric subalgebras of corresponding group rings. Moreover, we show that, for any abelian group G, homomorphisms from the skein algebra of G to C correspond exactly to traces of SL(2,C)-representations of G. We also solve, for abelian groups, the conjecture of Bullock on SL(2,C) character varieties of groups - we show that skein algebras are isomorphic to the coordinate rings of the corresponding character varieties.},
author = {Przytycki, Józef, Sikora, Adam},
journal = {Banach Center Publications},
keywords = {Kauffman bracket skein module},
language = {eng},
number = {1},
pages = {297-306},
title = {Skein algebra of a group},
url = {http://eudml.org/doc/208813},
volume = {42},
year = {1998},
}

TY - JOUR
AU - Przytycki, Józef
AU - Sikora, Adam
TI - Skein algebra of a group
JO - Banach Center Publications
PY - 1998
VL - 42
IS - 1
SP - 297
EP - 306
AB - We define for each group G the skein algebra of G. We show how it is related to the Kauffman bracket skein modules. We prove that skein algebras of abelian groups are isomorphic to symmetric subalgebras of corresponding group rings. Moreover, we show that, for any abelian group G, homomorphisms from the skein algebra of G to C correspond exactly to traces of SL(2,C)-representations of G. We also solve, for abelian groups, the conjecture of Bullock on SL(2,C) character varieties of groups - we show that skein algebras are isomorphic to the coordinate rings of the corresponding character varieties.
LA - eng
KW - Kauffman bracket skein module
UR - http://eudml.org/doc/208813
ER -

References

top
  1. [B-1] D. Bullock, Estimating a skein module with S L 2 ( C ) characters, Proc. Amer. Math. Soc. 125 (1997), 1835-1839. Zbl0866.57005
  2. [B-2] D. Bullock, Estimating the states of the Kauffman bracket skein module, this volume. Zbl0902.57016
  3. [B-P] D. Bullock, J. H. Przytycki, Kauffman bracket quantization of symmetric algebra and so(3), preprint 1996. 
  4. [C-S] M. Culler and P. B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. 117 (1983), 109-146. Zbl0529.57005
  5. [F-K] R. Fricke, F. Klein, Vorlesungen über die Theorie der automorphen Functionen, Vol. 1, pp. 365-370. Leipzig: B.G. Teubner 1897. Reprint: New York, Johnson reprint Corporation (Academic Press) 1965. 
  6. [Ho] R. D. Horowitz, Characters of free groups represented in two-dimensional special linear group, Comm. Pure and Appl. Math. 25, 1972, 635-649. Zbl1184.20009
  7. [H-P-1] J. Hoste, J. H. Przytycki, A survey of skein modules of 3-manifolds; in Knots 90, Proceedings of the International Conference on Knot Theory and Related Topics, Osaka (Japan), August 15-19, 1990, Editor A. Kawauchi, Walter de Gruyter 1992, 363-379. Zbl0772.57022
  8. [H-P-2] J. Hoste, J. H. Przytycki, The (2,∞)-skein module of lens spaces; a generalization of the Jones polynomial, Journal of Knot Theory and Its Ramifications, 2(3), 1993, 321-333. Zbl0796.57005
  9. [H-P-3] J. Hoste, J. H. Przytycki, The Kauffman bracket skein module of S 1 × S 2 , Math. Z., 220(1), 1995, 63-73. Zbl0826.57007
  10. [Hu] T. W. Hungerford, Algebra, Graduate Texts in Mathematics, Springer-Verlag 1974. 
  11. [Jo] T. Jorgensen, Closed geodesics on Riemann surfaces, Proc. Amer. Math. Soc., 72(1), 1978, 140-142. Zbl0406.53011
  12. [L-M] M. Lustig, W. Metzler, Integral representations of A u t F n and presentation classes of groups, Contemporary Mathematics, Vol 44, 1985, 51-67 (in Combinatorial Methods in Topology and Algebraic Geometry, Ed. J.R.Harper, R.Mandelbaum, Proceedings of a conference in honor of Arthur M.Stone, Rochester 1982). 
  13. [Ma-1] W. Magnus, Rings of Fricke characters and automorphism groups of free groups, Math. Z., 170, 1980, 91-103. Zbl0433.20033
  14. [Ma-2] W. Magnus, The use of 2 by 2 matrices in combinatorial group theory. A survey, Resultate der Mathematik, Vol. 4, 1981, 171-722. 
  15. [Pr] J. H. Przytycki, Skein modules of 3-manifolds, Bull. Polish Acad. Science, 39(1-2), 1991, 91-100. 
  16. [P-S-1] J. H. Przytycki, A. S. Sikora, On Skein Algebras And S l 2 ( C ) -Character Varieties, Topology, submitted. Zbl0958.57011
  17. [P-S-2] J. H. Przytycki, A. S. Sikora, in preparation. 
  18. [V] H. Vogt, Sur les invariants fondamentaux des équations différentielles linéaires du second ordre. Ann. Sci. Ecole Norm. Sup. (3) 6, Suppl. 3-72 (1889) (Thèse, Paris). Zbl21.0314.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.