Simple germs of corank one affine distributions

Michail Zhitomirskii; Witold Respondek

Banach Center Publications (1998)

  • Volume: 44, Issue: 1, page 269-276
  • ISSN: 0137-6934

How to cite


Zhitomirskii, Michail, and Respondek, Witold. "Simple germs of corank one affine distributions." Banach Center Publications 44.1 (1998): 269-276. <>.

author = {Zhitomirskii, Michail, Respondek, Witold},
journal = {Banach Center Publications},
keywords = {affine distribution; simple germ; nonequilibrium point; equilibrium point; classification of simple germs},
language = {eng},
number = {1},
pages = {269-276},
title = {Simple germs of corank one affine distributions},
url = {},
volume = {44},
year = {1998},

AU - Zhitomirskii, Michail
AU - Respondek, Witold
TI - Simple germs of corank one affine distributions
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 269
EP - 276
LA - eng
KW - affine distribution; simple germ; nonequilibrium point; equilibrium point; classification of simple germs
UR -
ER -


  1. [AVG, 85] V. I. Arnol'd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of Differentiable Maps, vol. 1, Birkhäuser, Boston, 1985. 
  2. [Ar, 78] V. I. Arnol'd, Mathematical Methods in Classical Mechanics, Springer-Verlag, New York, 1978. 
  3. [J, 90] B. Jakubczyk, Equivalence and invariants of nonlinear control systems, in: Nonlinear Controllability and Optimal Control, H. Sussmann (ed.), Marcel Dekker, New York, 1990, 177-218. Zbl0712.93027
  4. [JR, 90] B. Jakubczyk, W. Respondek, Feedback equivalence of planar systems and stabilizability, in: Robust Control of Linear Systems and Nonlinear Control, Proc. of the Internat. Sympos. MTNS-89, vol. 2, M. A. Kaashhoek, J. H. van Schuppen, and A. C. M. Ran (eds.), Birkhäuser, Boston, 1990, 447-456. Zbl0735.93038
  5. [L, 75] V. Lychagin, Local classification of nonlinear first-order partial differential equations, Uspekhi Mat. Nauk 30 (1975), 101-171; English transl. Russian Math. Surveys 30 (1975). 
  6. [M, 70] J. Martinet, Sur les singularites des formes differentielles, Ann. Inst. Fourier (Grenoble) 20 (1970), 95-178. 
  7. [RZh, 95] W. Respondek, M. Zhitomirskii, Feedback classification of nonlinear control systems on 3-manifolds, Math. Control Signals Systems 8 (1995), 299-333. Zbl0856.93044
  8. [T, 89] K. Tchoń, On normal forms of affine systems under feedback, in: New Trends in Nonlinear Control Theory, J. Descusse, M. Fliess, A. Isidori, and D. Leborgne (eds.), Lecture Notes in Control and Information Sciences 122, Springer-Verlag, 1989, 23-32. 
  9. [Zh, 85] M. Zhitomirskii, Finitely determined 1-forms ω, ω|_0 ≠ 0 are exhausted by the models of Darboux and Martinet, Funktsional Anal. i Prilozhen. 19 (1985), 71-72; English transl. Funct. Anal. Appl. 19 (1985). 
  10. [Zh, 92] M. Zhitomirskii, Typical Singularities of Differential 1-Forms and Pfaffian Equations, Translations of Mathematical Monographs 113, AMS, Providence, 1992. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.