Displaying similar documents to “Simple germs of corank one affine distributions”

Geometry of control-affine systems.

Clelland, Jeanne N., Moseley, Christopher G., Wilkens, George R. (2009)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Genericity of observability of control-affine systems

M. Balde, P. Jouan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

For smooth or real-analytic single-input, control-affine, non-linear systems, with at least two ouputs, observability for any input of a given class is generic. This class can be either the class of inputs bounded with their derivatives up to a certain order, or the class of polynomial inputs with bounded degree.

An affine framework for analytical mechanics

Paweł Urbański (2003)

Banach Center Publications

Similarity:

An affine Cartan calculus is developed. The concepts of special affine bundles and special affine duality are introduced. The canonical isomorphisms, fundamental for Lagrangian and Hamiltonian formulations of the dynamics in the affine setting are proved.

Control affine systems on solvable three-dimensional Lie groups, I

Rory Biggs, Claudiu C. Remsing (2013)

Archivum Mathematicum

Similarity:

We seek to classify the full-rank left-invariant control affine systems evolving on solvable three-dimensional Lie groups. In this paper we consider only the cases corresponding to the solvable Lie algebras of types II, IV, and V in the Bianchi-Behr classification.

Affine surfaces with parallel shape operators

Włodzimierz Jelonek (1992)

Annales Polonici Mathematici

Similarity:

We study affine nondegenerate Blaschke hypersurfaces whose shape operators are parallel with respect to the induced Blaschke connections. We classify such surfaces and thus give an exact classification of extremal locally symmetric surfaces, first described by F. Dillen.

Affine bijections of C(X,I)

Janko Marovt (2006)

Studia Mathematica

Similarity:

Let 𝒳 be a compact Hausdorff space which satisfies the first axiom of countability, I = [0,1] and 𝓒(𝒳,I) the set of all continuous functions from 𝒳 to I. If φ: 𝓒(𝒳,I) → 𝓒(𝒳,I) is a bijective affine map then there exists a homeomorphism μ: 𝒳 → 𝒳 such that for every component C in 𝒳 we have either φ(f)(x) = f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C, or φ(f)(x) = 1-f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C.