Variations on a conjecture of Halperin
Banach Center Publications (1998)
- Volume: 45, Issue: 1, page 115-135
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topLupton, Gregory. "Variations on a conjecture of Halperin." Banach Center Publications 45.1 (1998): 115-135. <http://eudml.org/doc/208897>.
@article{Lupton1998,
abstract = {Halperin has conjectured that the Serre spectral sequence of any fibration that has fibre space a certain kind of elliptic space should collapse at the $E_2$-term. In this paper we obtain an equivalent phrasing of this conjecture, in terms of formality relations between base and total spaces in such a fibration (Theorem 3.4). Also, we obtain results on relations between various numerical invariants of the base, total and fibre spaces in these fibrations. Some of our results give weak versions of Halperin’s conjecture (Remark 4.4 and Corollary 4.5). We go on to establish some of these weakened forms of the conjecture (Theorem 4.7). In the last section, we discuss extensions of our results and suggest some possibilities for future work.},
author = {Lupton, Gregory},
journal = {Banach Center Publications},
keywords = {Halperin conjecture; ellipctic spaces; formal spaces; Lyusternik-Shnirel'man category},
language = {eng},
number = {1},
pages = {115-135},
title = {Variations on a conjecture of Halperin},
url = {http://eudml.org/doc/208897},
volume = {45},
year = {1998},
}
TY - JOUR
AU - Lupton, Gregory
TI - Variations on a conjecture of Halperin
JO - Banach Center Publications
PY - 1998
VL - 45
IS - 1
SP - 115
EP - 135
AB - Halperin has conjectured that the Serre spectral sequence of any fibration that has fibre space a certain kind of elliptic space should collapse at the $E_2$-term. In this paper we obtain an equivalent phrasing of this conjecture, in terms of formality relations between base and total spaces in such a fibration (Theorem 3.4). Also, we obtain results on relations between various numerical invariants of the base, total and fibre spaces in these fibrations. Some of our results give weak versions of Halperin’s conjecture (Remark 4.4 and Corollary 4.5). We go on to establish some of these weakened forms of the conjecture (Theorem 4.7). In the last section, we discuss extensions of our results and suggest some possibilities for future work.
LA - eng
KW - Halperin conjecture; ellipctic spaces; formal spaces; Lyusternik-Shnirel'man category
UR - http://eudml.org/doc/208897
ER -
References
top- [Au] Aubry, M. Homotopy Theory and Models, DMV Seminar 24 (1995) Birkhäuser, Basel.
- [Ba] Baues, H. J. Algebraic Homotopy, Cambridge Tracts in Mathematics, vol. 15, Cambridge University Press, Cambridge, 1989.
- [Co] Cornea, O. There is Just One Rational Cone-Length, Transactions A. M. S. 344 (1994) 835-848. Zbl0813.55003
- [Co-Fé-Le] Cornea, O., Y. Félix and J.-M. Lemaire, Rational Category and Cone Length of Poincaré Complexes, Topology 37 (1998) 743-748. Zbl0899.55003
- [D-G-M-S] Deligne, P., P. Griffiths, J. Morgan and D. Sullivan, Real Homotopy Theory of Kähler Manifolds, Invent. Math. 29 (1975) 245-274.
- [Fé] Félix, Y. La Dichotomie Elliptique-Hyperbolique en Homotopie Rationnelle, Astérisque 176 (1989). Zbl0691.55001
- [Fé-Ha1] Y. Félix and S. Halperin, Formal Spaces with Finite-Dimensional Rational Homotopy, Transactions A. M. S. 270 (1982) 575-588. Zbl0489.55009
- [Fé-Ha2] Y. Félix and S. Halperin, Rational L-S Category and its Applications, Transactions A. M. S. 273 (1982) 1-37. Zbl0508.55004
- [Fé-Ha-Le] Félix, Y. S. Halperin and J.-M. Lemaire, The Rational LS Category of Products and of Poincaré Duality Complexes, Topology 37 (1998) 749-756. Zbl0897.55001
- [Fé-Th] Y. Félix and J.-C. Thomas, The Monoid of Self-Homotopy Equivalences of Some Homogeneous Spaces, Expositiones Math. 12 1994 305-322. Zbl0846.55005
- [Gr-Mo] P. Griffiths and J. Morgan, Rational Homotopy Theory and Differential Forms, Progress in Mathematics, vol. 15, Birkhäuser, Boston 1983.
- [Ha1] Halperin, S. Finiteness in the Minimal Models of Sullivan, Transactions A. M. S. 230 (1977) 173-199. Zbl0364.55014
- [Ha2] Halperin, S. Rational Fibrations, Minimal Models and Fiberings of Homogeneous Spaces, Transactions A. M. S. 244 (1978) 199-223.
- [Ha3] Halperin, S. Lectures on Minimal Models, Mem. S. M. F. 9/10 (1983). Zbl0536.55003
- [Ha-St] S. Halperin and J. Stasheff, Obstructions to Homotopy Equivalences, Advances in Math. 32 (1979) 233-279. Zbl0408.55009
- [He] Hess, K. A Proof of Ganea's Conjecture for Rational Spaces, Topology 30 (1991) 205-214. Zbl0717.55014
- [Ja] James, I. Lusternik-Schnirelmann Category, Handbook of Algebraic Topology, Elsevier, 1995, pp. 1293-1310. Zbl0863.55002
- [Je] Jessup, B. Rational L-S Category and a Conjecture of Ganea, J. of Pure and Appl. Alg. 65 (1990) 57-67.
- [Lu] Lupton, G. Note on a Conjecture of Stephen Halperin, Springer Lecture Notes in Mathematics, vol. 1440, 1990, pp. 148-163.
- [McC] McCleary, J. User's Guide to Spectral Sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Wilmington, 1985. Zbl0577.55001
- [Ma] Markl, M. Towards One Conjecture on Collapsing of the Serre Spectral Sequence, Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990) 151-159.
- [Me] Meier, W. Rational Universal Fibrations and Flag Manifolds, Math. Ann. 258 (1983) 329-340. Zbl0466.55012
- [Sh-Te] H. Shiga and M. Tezuka, Rational Fibrations, Homogeneous Spaces with Positive Euler Characteristic and Jacobians, Ann. Inst. Fourier 37 (1987) 81-106. Zbl0608.55006
- [Ta] Tanré, D. Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Springer Lecture Notes in Mathematics, vol. 1025, 1983.
- [Th1] Thomas, J.-C. Rational Homotopy of Serre Fibrations, Ann. Inst. Fourier 31 (1981) 71-90. Zbl0446.55009
- [Th2] Thomas, J.-C. Eilenberg-Moore Models for Fibrations, Transactions A. M. S. 274 (1982) 203-225. Zbl0504.55006
- [Vi] Vigué, M. Réalisation de Morphismes Donnés en Cohomologie et Suite Spectrale d'Eilenberg-Moore, Transactions A. M. S. 265 (1981) 447-484. Zbl0474.55009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.