Rational homotopy of Serre fibrations
Annales de l'institut Fourier (1981)
- Volume: 31, Issue: 3, page 71-90
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topThomas, Jean-Claude. "Rational homotopy of Serre fibrations." Annales de l'institut Fourier 31.3 (1981): 71-90. <http://eudml.org/doc/74508>.
@article{Thomas1981,
abstract = {In rational homotopy theory, we show how the homotopy notion of pure fibration arises in a natural way. It can be proved that some fibrations, with homogeneous spaces as fibre are pure fibrations. Consequences of these results on the operation of a Lie group and the existence of Serre fibrations are given. We also examine various measures of rational triviality for a fibration and compare them with and whithout the hypothesis of pure fibration.},
author = {Thomas, Jean-Claude},
journal = {Annales de l'institut Fourier},
keywords = {rational homotopy theory; pure fibration; fibrations with homogeneous spaces as fibre; existence of Serre fibrations; rational triviality for a fibration; minimal model},
language = {eng},
number = {3},
pages = {71-90},
publisher = {Association des Annales de l'Institut Fourier},
title = {Rational homotopy of Serre fibrations},
url = {http://eudml.org/doc/74508},
volume = {31},
year = {1981},
}
TY - JOUR
AU - Thomas, Jean-Claude
TI - Rational homotopy of Serre fibrations
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 3
SP - 71
EP - 90
AB - In rational homotopy theory, we show how the homotopy notion of pure fibration arises in a natural way. It can be proved that some fibrations, with homogeneous spaces as fibre are pure fibrations. Consequences of these results on the operation of a Lie group and the existence of Serre fibrations are given. We also examine various measures of rational triviality for a fibration and compare them with and whithout the hypothesis of pure fibration.
LA - eng
KW - rational homotopy theory; pure fibration; fibrations with homogeneous spaces as fibre; existence of Serre fibrations; rational triviality for a fibration; minimal model
UR - http://eudml.org/doc/74508
ER -
References
top- [1] A. BOREL, Sur la cohomologie des espaces fibrés..., Ann. of Math., vol. 57, n° 1 (1953), 115-207. Zbl0052.40001MR14,490e
- [2] A. BOREL and J.P. SERRE, Impossibilité de fibrer... C.R.A.S., (1950), 2258 et 943-945. Zbl0039.19201
- [3] H.J. BAUES, J.M. LEMAIRE, Minimal model in homotopy theory, Math. Ann., 225 (1977), 219-242. Zbl0322.55019MR55 #4174
- [4] H. CARTAN, La transgression dans un groupe de Lie... Colloque de Topologie, Masson, Paris, (1951) 51-71. Zbl0045.30701
- [5] W. GREUB et al., Connection curvative and cohomology, Vol. III, Academic Press (1976).
- [6] Y. FELIX, Classification homotopique des espaces rationnels à cohomogie fixée, Nouveaux Mémoires de la S.M.F., (1980). Zbl0447.55010
- [7] J.B. FRIEDLANDER and S. HALPERIN. — An arithmetic Characterization of the rational homotopy groups of certain spaces, Invent. Math., 53 (1979), 117-133. Zbl0396.55010MR81f:55006b
- [8] S. HALPERIN, Lecture notes on minimal models, Preprint 111, Université de Lille I, (1977).
- [9] S. HALPERIN, Rational fibration, minimal models..., Trans of the A.M.S., vol. 244 (1978), 199-223. Zbl0387.55010MR58 #24264
- [10] S. HALPERIN, Finiteness in the minimal model of Sullivan, Trans. of the A.M.S., vol. 230 (1977), 173-199. Zbl0364.55014MR57 #1493
- [11] S. HALPERIN and J. STASHEFF, Obstruction to homotopy equivalences, Advances in Math., 32 (1979), 233-279. Zbl0408.55009MR80j:55016
- [12] J.L. KOSZUL, Homologie et cohomologie des algèbres de Lie, Bull. S.M.F., 78 (1950). Zbl0039.02901MR12,120g
- [13] J.M. LEMAIRE, "Autopsie d'un meurtre"..., Ann. Sc. E.N.S. 4ème série, t. 1.1 (1978), 93-100. Zbl0382.55011MR58 #18423
- [14] J. NEISENDORFER, Formal and coformal spaces, Illinois Journal of Mathematics, vol. 22, Number 4 (1978), 565-580. Zbl0396.55011MR58 #18429
- [15] J.P. SERRE, Homologie singulière des espaces fibrés, Ann. of Math., Vol. 54 (1951), 425-505. Zbl0045.26003MR13,574g
- [16] D. SULLIVAN, Infinitesimal computation in topology, Publi. de l'I.H.E.S., n° 47 (1977). Zbl0374.57002MR58 #31119
- [17] J.C. THOMAS, Homotopie rationnelle des fibrés de Serre, Thèse Université de Lille I (1980) et C.R.A.S., n° 290 (1980), 811-813.
Citations in EuDML Documents
top- Aleksy Tralle, On compact symplectic and Kählerian solvmanifolds which are not completely solvable
- Toshihiro Yamaguchi, Formality of the function space of free maps into an elliptic space
- Anna Dumańska-Małyszko, Zofia Stępień, Aleksy Tralle, Generalized symmetric spaces and minimal models
- Wojciech Andrzejewski, Aleksy Tralle, Fat bundles and formality
- Gregory Lupton, Variations on a conjecture of Halperin
- H. Shiga, M. Tezuka, Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.