Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians

H. Shiga; M. Tezuka

Annales de l'institut Fourier (1987)

  • Volume: 37, Issue: 1, page 81-106
  • ISSN: 0373-0956

Abstract

top
We show that an orientable fibration whose fiber has a homotopy type of homogeneous space G / U with rank G = rang U is totally non homologous to zero for rational coefficients. The Jacobian formed by invariant polynomial under the Weyl group of G plays a key role in the proof. We also show that it is valid for mod. p coefficients if p does not divide the order of the Weyl group of G .

How to cite

top

Shiga, H., and Tezuka, M.. "Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians." Annales de l'institut Fourier 37.1 (1987): 81-106. <http://eudml.org/doc/74746>.

@article{Shiga1987,
abstract = {We show that an orientable fibration whose fiber has a homotopy type of homogeneous space $G/U$ with rank $G=~\{\rm rang\}~U$ is totally non homologous to zero for rational coefficients. The Jacobian formed by invariant polynomial under the Weyl group of $G$ plays a key role in the proof. We also show that it is valid for mod.$p$ coefficients if $p$ does not divide the order of the Weyl group of $G$.},
author = {Shiga, H., Tezuka, M.},
journal = {Annales de l'institut Fourier},
keywords = {fibration whose fiber has a homotopy type of homogeneous space; totally nonhomologous to zero; rational coefficients; Jacobian; Weyl group},
language = {eng},
number = {1},
pages = {81-106},
publisher = {Association des Annales de l'Institut Fourier},
title = {Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians},
url = {http://eudml.org/doc/74746},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Shiga, H.
AU - Tezuka, M.
TI - Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 1
SP - 81
EP - 106
AB - We show that an orientable fibration whose fiber has a homotopy type of homogeneous space $G/U$ with rank $G=~{\rm rang}~U$ is totally non homologous to zero for rational coefficients. The Jacobian formed by invariant polynomial under the Weyl group of $G$ plays a key role in the proof. We also show that it is valid for mod.$p$ coefficients if $p$ does not divide the order of the Weyl group of $G$.
LA - eng
KW - fibration whose fiber has a homotopy type of homogeneous space; totally nonhomologous to zero; rational coefficients; Jacobian; Weyl group
UR - http://eudml.org/doc/74746
ER -

References

top
  1. [1] A. BOREL, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207. Zbl0052.40001MR14,490e
  2. [2] A. BOREL and J.D. SIEBENTHAL, Les sous-groupes fermés de rang maximal de Lie clos, Comm. Math. Helv., 23 (1949), 200-221. Zbl0034.30701
  3. [3] R.W. CATER, Simple groups of Lie type, John Wilely and Sons, London, 1972. Zbl0248.20015
  4. [4] C. CHEVALLEY, Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778-782. Zbl0065.26103MR17,345d
  5. [5] H. COXETER, The product of the generators of a finite group generated by reflections, Duke Math. J., 18 (1951), 391-441. Zbl0044.25603MR13,528d
  6. [6] S. HALPERIN, Finitess in the minimal models of Sullivan, Trans. A.M.S., 230 (1977), 173-199. Zbl0364.55014MR57 #1493
  7. [7] B. KOSTANT, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), 997-1032. Zbl0099.25603MR22 #5693
  8. [8] H. MATSUMURA, Commutative Algebra, second edition, Benjamin (1980). Zbl0441.13001MR82i:13003
  9. [9] W. MEIER, Rational Universal fibration and Flag manifolds, Math. Ann., 258 (1982), 329-340. Zbl0466.55012MR83g:55009
  10. [10] D. QUILLEN, The mod 2 cohomology rings of extra-special 2-groups and the Spinor groups, Math. Ann., 194 (1971), 197-212. Zbl0225.55015MR44 #7582
  11. [11] M. SCHLESSINGER and J. STASCHEFF, Deformation theory and rational homotopy type, (to appear). 
  12. [12] R. STEINBERG, Lectures on Chevalley groups, Yale Univ. (1967). 
  13. [13] D. SULLIVAN, Infinitesimal computations in Topology, Publ. I.H.E.S., 47 (1977), 269-332. Zbl0374.57002MR58 #31119
  14. [14] J.C. THOMAS, Homotopie rationnelle des fibrations de Serre, Ann. Inst. Fourier, 31-3 (1981), 71-90. Zbl0446.55009MR83c:55016
  15. [15] J.C. THOMAS, Quelques questions commentées sur la fibre d'Eilengerg-Moore d'une fibration de Serre, Publ. Lille, 3, no 6 (1981). 
  16. [16] H. SHIGA, Classifying maps and homogeneous spaces, (preprint). 
  17. [17] A. KONO, H. SHIGA and M. TEZUKA, A note on the cohomology of a fiber space whose fiber is a homogeneous space, (preprint). Zbl0696.55019
  18. [18] H. SHIGA and M. TEZUKA, Cohomology automorphisms of some Homogeneous spaces, to appear in Topology and its applications (Singapore conference volume). Zbl0623.57031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.