The geometry of a closed form
Marisa Fernández; Raúl Ibáñez; Manuel de León
Banach Center Publications (1998)
- Volume: 45, Issue: 1, page 155-167
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topFernández, Marisa, Ibáñez, Raúl, and de León, Manuel. "The geometry of a closed form." Banach Center Publications 45.1 (1998): 155-167. <http://eudml.org/doc/208900>.
@article{Fernández1998,
abstract = {It is proved that a closed r-form ω on a manifold M defines a cohomology (called ω-coeffective) on M. A general algebraic machinery is developed to extract some topological information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms, fundamental 2-forms on almost contact manifolds, fundamental 3-forms on $G_\{2\}$-manifolds and fundamental 4-forms in quaternionic manifolds are discussed.},
author = {Fernández, Marisa, Ibáñez, Raúl, de León, Manuel},
journal = {Banach Center Publications},
keywords = {coeffective cohomology; symplectic forms; almost contact manifolds; quaternionic manifolds},
language = {eng},
number = {1},
pages = {155-167},
title = {The geometry of a closed form},
url = {http://eudml.org/doc/208900},
volume = {45},
year = {1998},
}
TY - JOUR
AU - Fernández, Marisa
AU - Ibáñez, Raúl
AU - de León, Manuel
TI - The geometry of a closed form
JO - Banach Center Publications
PY - 1998
VL - 45
IS - 1
SP - 155
EP - 167
AB - It is proved that a closed r-form ω on a manifold M defines a cohomology (called ω-coeffective) on M. A general algebraic machinery is developed to extract some topological information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms, fundamental 2-forms on almost contact manifolds, fundamental 3-forms on $G_{2}$-manifolds and fundamental 4-forms in quaternionic manifolds are discussed.
LA - eng
KW - coeffective cohomology; symplectic forms; almost contact manifolds; quaternionic manifolds
UR - http://eudml.org/doc/208900
ER -
References
top- [1] L. C. de Andrés, M. Fernández, M. de León, R. Ibáñez and J. Mencía, On the coeffective cohomology of compact symplectic manifolds, C. R. Acad. Sci. Paris, 318, Série I, (1994), 231-236. Zbl0814.57020
- [2] M. Berger, Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemannienes, Bull. Soc. Math. France, 83 (1955), 279-330. Zbl0068.36002
- [3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976. Zbl0319.53026
- [4] E. Bonan, Sur l'algèbre extérieure d'une variété presque hermitienne quaternionique, C. R. Acad. Sci. Paris, 295, Série I (1982), 115-118. Zbl0503.53016
- [5] E. Bonan, Isomorphismes sur une variété presque hermitienne quaternionique, in: Proc. of the Meeting on Quaternionic Structures in Math. and Physics, Trieste, SISSA, (1994), pp. 1-6.
- [6] T. Bouché, La cohomologie coeffective d'une variété symplectique, Bull. Sci. Math., 114 (2) (1990), 115-122. Zbl0714.58001
- [7] G. B. Brown and A. Gray, Vector cross products, Comment. Math. Helv. 42 (1967), 222-236. Zbl0155.35702
- [8] F. Cantrijn, L. Ibort and M. de León, On the geometry of multisymplectic manifolds, to appear in Journal of the Australian Mathematical Society. Zbl0968.53052
- [9] D. Chinea, M. de León and J. C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures et Appl., 72 (6) (1993), 567-591. Zbl0845.53025
- [10] D. Chinea, M. de León and J. C. Marrero, Coeffective cohomology on cosymplectic manifolds, Bull. Sci. Math., 119 (1) (1995), 3-20. Zbl0839.58005
- [11] P. Deligne, Ph. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. Zbl0312.55011
- [12] M. Fernández and A. Gray, Riemannian manifolds with structure group , Ann. Mat. Pura Appl. (IV) 32 (1982), 19-45. Zbl0524.53023
- [13] M. Fernández, R. Ibáñez and M. de León, A Nomizu's theorem for the coeffective cohomology, Math. Z. 226 (1997), 11-23. Zbl0886.58002
- [14] M. Fernández, R. Ibáñez and M. de León, The coeffective cohomology for compact symplectic nilmanifolds, in: Proceedings of the III Fall Workshop Differential Geometry and its Applications, Granada, Sept. 26-27, 1994, Anales de Física, Monografías 2, CIEMAT-RSFE, Madrid, 1995, pp. 131-144. Zbl0846.58002
- [15] M. Fernández, R. Ibáñez and M. de León, Coeffective and de Rham cohomologies of symplectic manifolds, to appear in J. of Geometry and Physics 491 (1998). Zbl0972.53050
- [16] M. Fernández, R. Ibáñez and M. de León, Coeffective and de Rham cohomologies on almost contact manifolds, Differential Geometry and Its Applications 8 (1998), 285-303. Zbl0940.53022
- [17] M. Fernández, R. Ibáñez and M. de León, Coeffective cohomology of quaternionic Kähler manifolds, Conference on Differential Geometry, Budapest, July 27-30, 1996. Zbl0939.53030
- [18] M. Fernández and L. Ugarte, Dolbeault cohomology for -manifolds, Geometriae Dedicata 70 (1998), 57-86.
- [19] M. Fernández and L. Ugarte, A differential complex for locally conformal calibrated -manifolds, preprint 1996. Zbl0949.53038
- [20] Ph. Griffiths and J. Morgan, Rational homotopy theory and differential forms, Progress in Math. 16, Birkhäuser, 1981. Zbl0474.55001
- [21] R. Ibáñez, Coeffective-Dolbeault cohomology of compact indefinite Kähler manifolds, Osaka J. Math. 34 (1997), 553-571. Zbl0901.53020
- [22] V. Kraines, Topology of quaternionic manifolds, Trans. Amer. Math. Soc. 122 (1966), 357-367. Zbl0148.16101
- [23] P. Libermann and Ch. M. Marle, Symplectic geometry and analytical mechanics, Kluwer, Dordrecht, 1987. Zbl0643.53002
- [24] G. Lupton and J. Oprea, private communication.
- [25] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure and Appl. Algebra 91 (1994), 193-207. Zbl0789.55010
- [26] D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Math. Monographs, Oxford Univ. Press, 1995. Zbl0844.58029
- [27] J. Moser, On the volume elements on manifolds, Trans. Amer. Soc. Math., 120 (1965), 286-295. Zbl0141.19407
- [28] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie group, Annals of Math. 59 (2) (1954), 531-538. Zbl0058.02202
- [29] J. A. Oubiña, New classes of almost contact metric structures, Publicationes Mathematicae 32 (3-4) (1985), 187-193. Zbl0611.53032
- [30] M. S. Raghunatan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik 68, Springer-Verlag, Berlin, 1972.
- [31] R. Reyes, Some special geometries defined by Lie groups, Thesis, Oxford, 1993.
- [32] S. Salamon, Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Math. Series 201, Longman, Boston, 1989. Zbl0685.53001
- [33] A. Swann, Hyperkähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421-450. Zbl0711.53051
- [34] A. Tralle and J. Oprea, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer, Berlin, 1997. Zbl0891.53001
- [35] I. Vaisman, Locally conformal symplectic manifolds, Internat. J. Math. & Math. Sci. 8 (1985), 3, 521-536. Zbl0585.53030
- [36] A. Weinstein, Lectures on symplectic manifolds, CBMS, Amer. Math. Soc. 29, Providence (R.I.), 1977.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.