The geometry of a closed form

Marisa Fernández; Raúl Ibáñez; Manuel de León

Banach Center Publications (1998)

  • Volume: 45, Issue: 1, page 155-167
  • ISSN: 0137-6934

Abstract

top
It is proved that a closed r-form ω on a manifold M defines a cohomology (called ω-coeffective) on M. A general algebraic machinery is developed to extract some topological information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms, fundamental 2-forms on almost contact manifolds, fundamental 3-forms on G 2 -manifolds and fundamental 4-forms in quaternionic manifolds are discussed.

How to cite

top

Fernández, Marisa, Ibáñez, Raúl, and de León, Manuel. "The geometry of a closed form." Banach Center Publications 45.1 (1998): 155-167. <http://eudml.org/doc/208900>.

@article{Fernández1998,
abstract = {It is proved that a closed r-form ω on a manifold M defines a cohomology (called ω-coeffective) on M. A general algebraic machinery is developed to extract some topological information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms, fundamental 2-forms on almost contact manifolds, fundamental 3-forms on $G_\{2\}$-manifolds and fundamental 4-forms in quaternionic manifolds are discussed.},
author = {Fernández, Marisa, Ibáñez, Raúl, de León, Manuel},
journal = {Banach Center Publications},
keywords = {coeffective cohomology; symplectic forms; almost contact manifolds; quaternionic manifolds},
language = {eng},
number = {1},
pages = {155-167},
title = {The geometry of a closed form},
url = {http://eudml.org/doc/208900},
volume = {45},
year = {1998},
}

TY - JOUR
AU - Fernández, Marisa
AU - Ibáñez, Raúl
AU - de León, Manuel
TI - The geometry of a closed form
JO - Banach Center Publications
PY - 1998
VL - 45
IS - 1
SP - 155
EP - 167
AB - It is proved that a closed r-form ω on a manifold M defines a cohomology (called ω-coeffective) on M. A general algebraic machinery is developed to extract some topological information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms, fundamental 2-forms on almost contact manifolds, fundamental 3-forms on $G_{2}$-manifolds and fundamental 4-forms in quaternionic manifolds are discussed.
LA - eng
KW - coeffective cohomology; symplectic forms; almost contact manifolds; quaternionic manifolds
UR - http://eudml.org/doc/208900
ER -

References

top
  1. [1] L. C. de Andrés, M. Fernández, M. de León, R. Ibáñez and J. Mencía, On the coeffective cohomology of compact symplectic manifolds, C. R. Acad. Sci. Paris, 318, Série I, (1994), 231-236. Zbl0814.57020
  2. [2] M. Berger, Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemannienes, Bull. Soc. Math. France, 83 (1955), 279-330. Zbl0068.36002
  3. [3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976. Zbl0319.53026
  4. [4] E. Bonan, Sur l'algèbre extérieure d'une variété presque hermitienne quaternionique, C. R. Acad. Sci. Paris, 295, Série I (1982), 115-118. Zbl0503.53016
  5. [5] E. Bonan, Isomorphismes sur une variété presque hermitienne quaternionique, in: Proc. of the Meeting on Quaternionic Structures in Math. and Physics, Trieste, SISSA, (1994), pp. 1-6. 
  6. [6] T. Bouché, La cohomologie coeffective d'une variété symplectique, Bull. Sci. Math., 114 (2) (1990), 115-122. Zbl0714.58001
  7. [7] G. B. Brown and A. Gray, Vector cross products, Comment. Math. Helv. 42 (1967), 222-236. Zbl0155.35702
  8. [8] F. Cantrijn, L. Ibort and M. de León, On the geometry of multisymplectic manifolds, to appear in Journal of the Australian Mathematical Society. Zbl0968.53052
  9. [9] D. Chinea, M. de León and J. C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures et Appl., 72 (6) (1993), 567-591. Zbl0845.53025
  10. [10] D. Chinea, M. de León and J. C. Marrero, Coeffective cohomology on cosymplectic manifolds, Bull. Sci. Math., 119 (1) (1995), 3-20. Zbl0839.58005
  11. [11] P. Deligne, Ph. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. Zbl0312.55011
  12. [12] M. Fernández and A. Gray, Riemannian manifolds with structure group G 2 , Ann. Mat. Pura Appl. (IV) 32 (1982), 19-45. Zbl0524.53023
  13. [13] M. Fernández, R. Ibáñez and M. de León, A Nomizu's theorem for the coeffective cohomology, Math. Z. 226 (1997), 11-23. Zbl0886.58002
  14. [14] M. Fernández, R. Ibáñez and M. de León, The coeffective cohomology for compact symplectic nilmanifolds, in: Proceedings of the III Fall Workshop Differential Geometry and its Applications, Granada, Sept. 26-27, 1994, Anales de Física, Monografías 2, CIEMAT-RSFE, Madrid, 1995, pp. 131-144. Zbl0846.58002
  15. [15] M. Fernández, R. Ibáñez and M. de León, Coeffective and de Rham cohomologies of symplectic manifolds, to appear in J. of Geometry and Physics 491 (1998). Zbl0972.53050
  16. [16] M. Fernández, R. Ibáñez and M. de León, Coeffective and de Rham cohomologies on almost contact manifolds, Differential Geometry and Its Applications 8 (1998), 285-303. Zbl0940.53022
  17. [17] M. Fernández, R. Ibáñez and M. de León, Coeffective cohomology of quaternionic Kähler manifolds, Conference on Differential Geometry, Budapest, July 27-30, 1996. Zbl0939.53030
  18. [18] M. Fernández and L. Ugarte, Dolbeault cohomology for G 2 -manifolds, Geometriae Dedicata 70 (1998), 57-86. 
  19. [19] M. Fernández and L. Ugarte, A differential complex for locally conformal calibrated G 2 -manifolds, preprint 1996. Zbl0949.53038
  20. [20] Ph. Griffiths and J. Morgan, Rational homotopy theory and differential forms, Progress in Math. 16, Birkhäuser, 1981. Zbl0474.55001
  21. [21] R. Ibáñez, Coeffective-Dolbeault cohomology of compact indefinite Kähler manifolds, Osaka J. Math. 34 (1997), 553-571. Zbl0901.53020
  22. [22] V. Kraines, Topology of quaternionic manifolds, Trans. Amer. Math. Soc. 122 (1966), 357-367. Zbl0148.16101
  23. [23] P. Libermann and Ch. M. Marle, Symplectic geometry and analytical mechanics, Kluwer, Dordrecht, 1987. Zbl0643.53002
  24. [24] G. Lupton and J. Oprea, private communication. 
  25. [25] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure and Appl. Algebra 91 (1994), 193-207. Zbl0789.55010
  26. [26] D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Math. Monographs, Oxford Univ. Press, 1995. Zbl0844.58029
  27. [27] J. Moser, On the volume elements on manifolds, Trans. Amer. Soc. Math., 120 (1965), 286-295. Zbl0141.19407
  28. [28] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie group, Annals of Math. 59 (2) (1954), 531-538. Zbl0058.02202
  29. [29] J. A. Oubiña, New classes of almost contact metric structures, Publicationes Mathematicae 32 (3-4) (1985), 187-193. Zbl0611.53032
  30. [30] M. S. Raghunatan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik 68, Springer-Verlag, Berlin, 1972. 
  31. [31] R. Reyes, Some special geometries defined by Lie groups, Thesis, Oxford, 1993. 
  32. [32] S. Salamon, Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Math. Series 201, Longman, Boston, 1989. Zbl0685.53001
  33. [33] A. Swann, Hyperkähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421-450. Zbl0711.53051
  34. [34] A. Tralle and J. Oprea, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer, Berlin, 1997. Zbl0891.53001
  35. [35] I. Vaisman, Locally conformal symplectic manifolds, Internat. J. Math. & Math. Sci. 8 (1985), 3, 521-536. Zbl0585.53030
  36. [36] A. Weinstein, Lectures on symplectic manifolds, CBMS, Amer. Math. Soc. 29, Providence (R.I.), 1977. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.