Periodic segments and Nielsen numbers

Klaudiusz Wójcik

Banach Center Publications (1999)

  • Volume: 47, Issue: 1, page 247-252
  • ISSN: 0137-6934

Abstract

top
We prove that the Poincaré map φ ( 0 , T ) has at least N ( h ˜ , c l ( W 0 W 0 - ) ) fixed points (whose trajectories are contained inside the segment W) where the homeomorphism h ˜ is given by the segment W.

How to cite

top

Wójcik, Klaudiusz. "Periodic segments and Nielsen numbers." Banach Center Publications 47.1 (1999): 247-252. <http://eudml.org/doc/208938>.

@article{Wójcik1999,
abstract = {We prove that the Poincaré map $φ_\{(0,T)\}$ has at least $N(\tilde\{h\}, cl(W_\{0\} \ W_\{0\}^\{-\}) )$ fixed points (whose trajectories are contained inside the segment W) where the homeomorphism $\tilde\{h\}$ is given by the segment W.},
author = {Wójcik, Klaudiusz},
journal = {Banach Center Publications},
keywords = {local process; periodic orbit; Poincaré mapping; Nielsen number; exit set},
language = {eng},
number = {1},
pages = {247-252},
title = {Periodic segments and Nielsen numbers},
url = {http://eudml.org/doc/208938},
volume = {47},
year = {1999},
}

TY - JOUR
AU - Wójcik, Klaudiusz
TI - Periodic segments and Nielsen numbers
JO - Banach Center Publications
PY - 1999
VL - 47
IS - 1
SP - 247
EP - 252
AB - We prove that the Poincaré map $φ_{(0,T)}$ has at least $N(\tilde{h}, cl(W_{0} \ W_{0}^{-}) )$ fixed points (whose trajectories are contained inside the segment W) where the homeomorphism $\tilde{h}$ is given by the segment W.
LA - eng
KW - local process; periodic orbit; Poincaré mapping; Nielsen number; exit set
UR - http://eudml.org/doc/208938
ER -

References

top
  1. [1] P. Boyland, Topological methods in surface dynamics, Topol. Appl. 58 (1994), 223-298. Zbl0810.54031
  2. [2] R. F. Brown, On the Nielsen fixed point theorem for compact maps, Duke Math. J. 36 (1969), 699-708. Zbl0186.57002
  3. [3] B. Jiang, Lectures on Nielsen Fixed point Theory, Contemp. Math. vol. 14, AMS Providence, 1983. 
  4. [4] B. Jiang, Nielsen theory for periodic orbits and applications to dynamical systems, Contemp. Math. vol. 152, 183-202, AMS Providence 1993 Zbl0798.55001
  5. [5] H. Schirmer, On the location of fixed point sets of pairs of spaces, Topol. and its Appl. 30 (1988), 253-266. 
  6. [6] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 65-72. 
  7. [7] H. Schirmer, A Survey of Relative Nielsen Fixed Point Theory, Contemp. Math. vol. 152, 291-309, AMS Providence 1993. Zbl0805.55001
  8. [8] C.C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. no 38, AMS, Providence R.I., 1978, 
  9. [9] R. Srzednicki, Periodic and bounded solutions in block for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal. Theory Meth. Appl. 22 no 6 (1994), 707-737, Zbl0801.34041
  10. [10] R. Srzednicki, On periodic solutions of planar differential equations with periodic coefficients, J. Diff. Equat. 114 (1994), 77-100, Zbl0811.34031
  11. [11] R. Srzednicki and K. Wójcik, A Geometric Method for Detecting Chaotic Dynamics, J. Diff. Equat. Vol. 135, (1997), 66-82. Zbl0873.58049
  12. [12] R. Srzednicki, A Geometric Method for the Periodic Problem in Ordinary Differential Equations, Seminaire D'Analyse Moderne No.22, Eds.: G. Fournier, T. Kaczynski, Université de Sherbrooke 1992. Zbl0822.34039
  13. [13] K. Wójcik, Isolating segments and symbolic dynamics, to appear in Nonlinear Anal. Th. Meth. Appl. Zbl0955.37005
  14. [14] X. Z. Zhao, A relative Nielsen number for the complement, Lecture Notes in Math. vol. 1411, Springer-Verlag, 1989, 189-199. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.