Deformations of Batalin-Vilkovisky algebras

Olga Kravchenko

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 131-139
  • ISSN: 0137-6934

Abstract

top
We show that a graded commutative algebra A with any square zero odd differential operator is a natural generalization of a Batalin-Vilkovisky algebra. While such an operator of order 2 defines a Gerstenhaber (Lie) algebra structure on A, an operator of an order higher than 2 (Koszul-Akman definition) leads to the structure of a strongly homotopy Lie algebra ( L -algebra) on A. This allows us to give a definition of a Batalin-Vilkovisky algebra up to homotopy. We also make a conjecture which is a generalization of the formality theorem of Kontsevich to the Batalin-Vilkovisky algebra level.

How to cite

top

Kravchenko, Olga. "Deformations of Batalin-Vilkovisky algebras." Banach Center Publications 51.1 (2000): 131-139. <http://eudml.org/doc/209024>.

@article{Kravchenko2000,
abstract = {We show that a graded commutative algebra A with any square zero odd differential operator is a natural generalization of a Batalin-Vilkovisky algebra. While such an operator of order 2 defines a Gerstenhaber (Lie) algebra structure on A, an operator of an order higher than 2 (Koszul-Akman definition) leads to the structure of a strongly homotopy Lie algebra ($L_∞$-algebra) on A. This allows us to give a definition of a Batalin-Vilkovisky algebra up to homotopy. We also make a conjecture which is a generalization of the formality theorem of Kontsevich to the Batalin-Vilkovisky algebra level.},
author = {Kravchenko, Olga},
journal = {Banach Center Publications},
keywords = {second order differential operator of square zero; graded commutative algebra; Batalin-Vilkovisky algebra; strongly homotopy Lie algebra; formality theorem of Kontsevich},
language = {eng},
number = {1},
pages = {131-139},
title = {Deformations of Batalin-Vilkovisky algebras},
url = {http://eudml.org/doc/209024},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Kravchenko, Olga
TI - Deformations of Batalin-Vilkovisky algebras
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 131
EP - 139
AB - We show that a graded commutative algebra A with any square zero odd differential operator is a natural generalization of a Batalin-Vilkovisky algebra. While such an operator of order 2 defines a Gerstenhaber (Lie) algebra structure on A, an operator of an order higher than 2 (Koszul-Akman definition) leads to the structure of a strongly homotopy Lie algebra ($L_∞$-algebra) on A. This allows us to give a definition of a Batalin-Vilkovisky algebra up to homotopy. We also make a conjecture which is a generalization of the formality theorem of Kontsevich to the Batalin-Vilkovisky algebra level.
LA - eng
KW - second order differential operator of square zero; graded commutative algebra; Batalin-Vilkovisky algebra; strongly homotopy Lie algebra; formality theorem of Kontsevich
UR - http://eudml.org/doc/209024
ER -

References

top
  1. [A] F. Akman, On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra 120 (1997), no. 2, 105-141 Zbl0885.17020
  2. [BK] S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, Internat. Math. Res. Notices 1998, no. 4, 201-215. Zbl0914.58004
  3. [BDA] K. Bering, P. H. Damgaard and J. Alfaro, Algebra of Higher Antibrackets, Nucl. Phys. B478 (1996) 459-504. Zbl0925.81398
  4. [G] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), no. 2, 265-285. Zbl0807.17026
  5. [GK] E. Getzler and M. Kapranov, Cyclic operads and cyclic homology, in ``Geometry, topology, and physics,'' International Press, Cambridge, MA, 1995, pp. 167-201. Zbl0883.18013
  6. [HS] V. Hinich and V. Schechtman, Homotopy Lie algebras, in: I. M. Gel'fand Seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 1-28. Zbl0823.18004
  7. [H] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 2, 425-440. Zbl0973.17027
  8. [K] M. Kontsevich, Deformation quantization of Poisson manifolds, I, preprint, q-alg/9709040. Zbl1058.53065
  9. [KS] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applic. Math. 41 (1995) 153-165. Zbl0837.17014
  10. [Ko] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan, (Lyon, 1984). Astérisque 1985, Hors Série, 257-271. 
  11. [LM] T. Lada and M. Markl, Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), no. 6, 2147-2161. Zbl0999.17019
  12. [LS] T. Lada and J. Stasheff, Introduction to sh Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993), 1087-1104. Zbl0824.17024
  13. [LZ] B. H. Lian and G. J. Zuckerman, New perpectives on the BRST-algebraic structure of string theory, Comm. Math. Phys. 154 (1993), 613-646. Zbl0780.17029
  14. [Li] M. Livernet, Homologie des algèbres de matrices d'une algèbre associative à homotopie près, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 113-116. 
  15. [L] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3-4, 269-293. 
  16. [M] Yu. Manin, Three constructions of Frobenius manifolds: a comparative study, preprint, math.QA/9801006 
  17. [P] M. Penkava, L algebras and their cohomology, preprint, q-alg/9512014. 
  18. [PS] M. Penkava and A. Schwarz, On some algebraic structures arising in string theory. Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Internat. Press, Cambridge, MA, 1994, 219-227. Zbl0871.17021
  19. [R] C. Roger, Algèbres de Lie graduées et quantification, in: Symplectic Geometry and Mathematical Physics, Progress in Math. (Birkhäuser) no. 99, 1991, 374-421. 
  20. [Sch] V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras, preprint, math/9802006. 
  21. [S] J. Stasheff, The (secret?) homological algebra of the Batalin-Vilkovisky approach, hep-th/9712157, Secondary calculus and cohomological physics (Moscow, 1997), 195-210, Contemp. Math., 219, Amer. Math. Soc., Providence, RI, 1998. 
  22. [Schw] A. Schwarz, Geometry of Batalin-Vilkovisky quantization, Comm. Math. Phys. 155 (1993), no. 2, 249-260. Zbl0786.58017
  23. [T] D. Tamarkin, Another proof of M. Kontsevich formality theorem, preprint, math/9803025. 
  24. [V] A. Vaintrob, Lie algebroids and homological fields, Russian Math. Surveys 52 (1997), no.2. Zbl0955.58017
  25. [W] E. Witten, A note on the antibracket formalism, Mod. Phys. Lett., A5, 1990, 487-494. Zbl1020.81931
  26. [Xu] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, dg-ga/9703001, Comm. Math. Phys. 200 (1999), no. 3, 545-560. Zbl0941.17016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.