Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras

Johannes Huebschmann

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 2, page 425-440
  • ISSN: 0373-0956

Abstract

top
For any Lie-Rinehart algebra ( A , L ) , B(atalin)-V(ilkovisky) algebra structures on the exterior A -algebra Λ A L correspond bijectively to right ( A , L ) -module structures on A ; likewise, generators for the Gerstenhaber algebra Λ A L correspond bijectively to right ( A , L ) -connections on A . When L is projective as an A -module, given a B-V algebra structure on Λ A L , the homology of the B-V algebra ( Λ A L , ) coincides with the homology of L with coefficients in A with reference to the right ( A , L ) -module structure determined by . When L is also of finite rank n , there are bijective correspondences between ( A , L ) -connections on Λ A n L and right ( A , L ) -connections on A and between left ( A , L ) -module structures on Λ A n L and right ( A , L ) -module structures on A . Hence there are bijective correspondences between ( A , L ) -connections on Λ A n L and generators for the Gerstenhaber bracket on Λ A L and between ( A , L ) -module structures on Λ A n L and B-V algebra structures on Λ A L . The homology of such a B-V algebra ( Λ A L , ) coincides with the cohomology of L with coefficients in Λ A n L , with reference to the left ( A , L ) -module structure determined by . Some applications to Poisson structures and to differential geometry are discussed.

How to cite

top

Huebschmann, Johannes. "Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras." Annales de l'institut Fourier 48.2 (1998): 425-440. <http://eudml.org/doc/75288>.

@article{Huebschmann1998,
abstract = {For any Lie-Rinehart algebra $(A,L)$, B(atalin)-V(ilkovisky) algebra structures $\partial $ on the exterior $A$-algebra $\Lambda _A L$ correspond bijectively to right $(A,L)$-module structures on $A$; likewise, generators for the Gerstenhaber algebra $\Lambda _A L$ correspond bijectively to right $(A,L)$-connections on $A$. When $L$ is projective as an $A$-module, given a B-V algebra structure $\partial $ on $\Lambda _A L$, the homology of the B-V algebra $(\Lambda _A L,\partial )$ coincides with the homology of $L$ with coefficients in $A$ with reference to the right $(A,L)$-module structure determined by $\partial $. When $L$ is also of finite rank $n$, there are bijective correspondences between $(A,L)$-connections on $\Lambda _A^nL$ and right $(A,L)$-connections on $A$ and between left $(A,L)$-module structures on $\Lambda _A^nL$ and right $(A,L)$-module structures on $A$. Hence there are bijective correspondences between $(A,L)$-connections on $\Lambda _A^n L$ and generators for the Gerstenhaber bracket on $\Lambda _A L$ and between $(A,L)$-module structures on $\Lambda _A^n L$ and B-V algebra structures on $\Lambda _A L$. The homology of such a B-V algebra $(\Lambda _A L,\partial )$ coincides with the cohomology of $L$ with coefficients in $\Lambda _A^n L$, with reference to the left $(A,L)$-module structure determined by $\partial $. Some applications to Poisson structures and to differential geometry are discussed.},
author = {Huebschmann, Johannes},
journal = {Annales de l'institut Fourier},
keywords = {Lie-Rinehart algebras; Gertenhaber algebras; Batalin-Vilkovisky algebras; abstract left and right connections; cohomological duality for Lie-Rinehart algebras; Poisson structures},
language = {eng},
number = {2},
pages = {425-440},
publisher = {Association des Annales de l'Institut Fourier},
title = {Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras},
url = {http://eudml.org/doc/75288},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Huebschmann, Johannes
TI - Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 2
SP - 425
EP - 440
AB - For any Lie-Rinehart algebra $(A,L)$, B(atalin)-V(ilkovisky) algebra structures $\partial $ on the exterior $A$-algebra $\Lambda _A L$ correspond bijectively to right $(A,L)$-module structures on $A$; likewise, generators for the Gerstenhaber algebra $\Lambda _A L$ correspond bijectively to right $(A,L)$-connections on $A$. When $L$ is projective as an $A$-module, given a B-V algebra structure $\partial $ on $\Lambda _A L$, the homology of the B-V algebra $(\Lambda _A L,\partial )$ coincides with the homology of $L$ with coefficients in $A$ with reference to the right $(A,L)$-module structure determined by $\partial $. When $L$ is also of finite rank $n$, there are bijective correspondences between $(A,L)$-connections on $\Lambda _A^nL$ and right $(A,L)$-connections on $A$ and between left $(A,L)$-module structures on $\Lambda _A^nL$ and right $(A,L)$-module structures on $A$. Hence there are bijective correspondences between $(A,L)$-connections on $\Lambda _A^n L$ and generators for the Gerstenhaber bracket on $\Lambda _A L$ and between $(A,L)$-module structures on $\Lambda _A^n L$ and B-V algebra structures on $\Lambda _A L$. The homology of such a B-V algebra $(\Lambda _A L,\partial )$ coincides with the cohomology of $L$ with coefficients in $\Lambda _A^n L$, with reference to the left $(A,L)$-module structure determined by $\partial $. Some applications to Poisson structures and to differential geometry are discussed.
LA - eng
KW - Lie-Rinehart algebras; Gertenhaber algebras; Batalin-Vilkovisky algebras; abstract left and right connections; cohomological duality for Lie-Rinehart algebras; Poisson structures
UR - http://eudml.org/doc/75288
ER -

References

top
  1. [1] I.A. BATALIN and G.S. VILKOVISKY, Quantization of gauge theories with linearly dependent generators, Phys. Rev., D 28 (1983), 2567-2582. 
  2. [2] I.A. BATALIN and G.S. VILKOVISKY, Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nucl. Phys. B, 234 (1984), 106-124. 
  3. [3] I.A. BATALIN and G.S. VILKOVISKY, Existence theorem for gauge algebra, Jour. Math. Phys., 26 (1985), 172-184. 
  4. [4] S. EVENS, J.-H. LU, and A. WEINSTEIN, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, preprint. Zbl0968.58014
  5. [5] M. GERSTENHABER, The cohomology structure of an associative ring, Ann. of Math., 78 (1963), 267-288. Zbl0131.27302MR28 #5102
  6. [6] M. GERSTENHABER and Samuel D. SCHACK, Algebras, bialgebras, quantum groups and algebraic deformations, In: Deformation theory and quantum groups with applications to mathematical physics, M. Gerstenhaber and J. Stasheff, eds. Cont. Math., AMS, Providence, 134 (1992), 51-92. Zbl0788.17009MR94b:16045
  7. [7] E. GETZLER, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. in Math. Phys., 195 (1994), 265-285. Zbl0807.17026MR95h:81099
  8. [8] G. HOCHSCHILD, Relative homological algebra, Trans. Amer. Math. Soc., 82 (1956), 246-269. Zbl0070.26903MR18,278a
  9. [9] J. HUEBSCHMANN, Poisson cohomology and quantization, J. für die Reine und Angew. Math., 408 (1990), 57-113. Zbl0699.53037MR92e:17027
  10. [10] J. HUEBSCHMANN, Duality for Lie-Rinehart algebras and the modular class, preprint dg-ga/9702008, 1997. Zbl1034.53083
  11. [11] D. HUSEMOLLER, J.C. MOORE and J.D. STASHEFF, Differential homological algebra and homogeneous spaces J. of Pure and Applied Algebra, 5 (1974), 113-185. Zbl0364.18008MR51 #1823
  12. [12] Y. KOSMANN-SCHWARZBACH, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae Mathematicae, 41 (1995), 153-165. Zbl0837.17014MR97i:17021
  13. [13] J.-L. KOSZUL, Crochet de Schouten-Nijenhuiset cohomologie, in E. Cartan et les Mathématiciens d'aujourd'hui, Lyon, 25-29 Juin, 1984, Astérisque, hors-série, (1985) 251-271. Zbl0615.58029
  14. [14] B.H. LIAN and G.J. ZUCKERMAN, New perspectives on the BRST-algebraic structure of string theory, Comm. in Math. Phys., 154 (1993), 613-646. Zbl0780.17029MR94e:81333
  15. [15] G. RINEHART, Differential forms for general commutative algebras, Trans. Amer. Math. Soc., 108 (1963), 195-222. Zbl0113.26204MR27 #4850
  16. [16] J.D. STASHEFF, Deformation theory and the Batalin-Vilkovisky master equation, in: Deformation Theory and Symplectic Geometry, Proceedings of the Ascona meeting, June 1996, D. Sternheimer, J. Rawnsley, S. Gutt, eds., Mathematical Physics Studies, Vol. 20 Kluwer Academic Publishers, Dordrecht-Boston-London, 1997, 271-284. Zbl1149.81359
  17. [17] A. WEINSTEIN, The modular automorphism group of a Poisson manifold, to appear in: special volume in honor of A. Lichnerowicz, J. of Geometry and Physics. Zbl0902.58013
  18. [18] P. XU, Gerstenhaber algebras and BV-algebras in Poisson geometry, preprint, 1997. Zbl0941.17016

Citations in EuDML Documents

top
  1. Olga Kravchenko, Deformations of Batalin-Vilkovisky algebras
  2. Izu Vaisman, The BV-algebra of a Jacobi manifold
  3. Yvette Kosmann-Schwarzbach, Modular vector fields and Batalin-Vilkovisky algebras
  4. Janusz Grabowski, Giuseppe Marmo, Peter W. Michor, Homology and modular classes of Lie algebroids
  5. Claude Roger, Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects
  6. Johannes Huebschmann, Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras
  7. Francisco Javier Calderón Moreno, Luis Narváez Macarro, Dualité et comparaison pour les complexes de de Rham logarithmiques par rapport aux diviseurs libres
  8. Yvette Kosmann-Schwarzbach, Juan Monterde, Divergence operators and odd Poisson brackets

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.