Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 2, page 425-440
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHuebschmann, Johannes. "Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras." Annales de l'institut Fourier 48.2 (1998): 425-440. <http://eudml.org/doc/75288>.
@article{Huebschmann1998,
abstract = {For any Lie-Rinehart algebra $(A,L)$, B(atalin)-V(ilkovisky) algebra structures $\partial $ on the exterior $A$-algebra $\Lambda _A L$ correspond bijectively to right $(A,L)$-module structures on $A$; likewise, generators for the Gerstenhaber algebra $\Lambda _A L$ correspond bijectively to right $(A,L)$-connections on $A$. When $L$ is projective as an $A$-module, given a B-V algebra structure $\partial $ on $\Lambda _A L$, the homology of the B-V algebra $(\Lambda _A L,\partial )$ coincides with the homology of $L$ with coefficients in $A$ with reference to the right $(A,L)$-module structure determined by $\partial $. When $L$ is also of finite rank $n$, there are bijective correspondences between $(A,L)$-connections on $\Lambda _A^nL$ and right $(A,L)$-connections on $A$ and between left $(A,L)$-module structures on $\Lambda _A^nL$ and right $(A,L)$-module structures on $A$. Hence there are bijective correspondences between $(A,L)$-connections on $\Lambda _A^n L$ and generators for the Gerstenhaber bracket on $\Lambda _A L$ and between $(A,L)$-module structures on $\Lambda _A^n L$ and B-V algebra structures on $\Lambda _A L$. The homology of such a B-V algebra $(\Lambda _A L,\partial )$ coincides with the cohomology of $L$ with coefficients in $\Lambda _A^n L$, with reference to the left $(A,L)$-module structure determined by $\partial $. Some applications to Poisson structures and to differential geometry are discussed.},
author = {Huebschmann, Johannes},
journal = {Annales de l'institut Fourier},
keywords = {Lie-Rinehart algebras; Gertenhaber algebras; Batalin-Vilkovisky algebras; abstract left and right connections; cohomological duality for Lie-Rinehart algebras; Poisson structures},
language = {eng},
number = {2},
pages = {425-440},
publisher = {Association des Annales de l'Institut Fourier},
title = {Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras},
url = {http://eudml.org/doc/75288},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Huebschmann, Johannes
TI - Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 2
SP - 425
EP - 440
AB - For any Lie-Rinehart algebra $(A,L)$, B(atalin)-V(ilkovisky) algebra structures $\partial $ on the exterior $A$-algebra $\Lambda _A L$ correspond bijectively to right $(A,L)$-module structures on $A$; likewise, generators for the Gerstenhaber algebra $\Lambda _A L$ correspond bijectively to right $(A,L)$-connections on $A$. When $L$ is projective as an $A$-module, given a B-V algebra structure $\partial $ on $\Lambda _A L$, the homology of the B-V algebra $(\Lambda _A L,\partial )$ coincides with the homology of $L$ with coefficients in $A$ with reference to the right $(A,L)$-module structure determined by $\partial $. When $L$ is also of finite rank $n$, there are bijective correspondences between $(A,L)$-connections on $\Lambda _A^nL$ and right $(A,L)$-connections on $A$ and between left $(A,L)$-module structures on $\Lambda _A^nL$ and right $(A,L)$-module structures on $A$. Hence there are bijective correspondences between $(A,L)$-connections on $\Lambda _A^n L$ and generators for the Gerstenhaber bracket on $\Lambda _A L$ and between $(A,L)$-module structures on $\Lambda _A^n L$ and B-V algebra structures on $\Lambda _A L$. The homology of such a B-V algebra $(\Lambda _A L,\partial )$ coincides with the cohomology of $L$ with coefficients in $\Lambda _A^n L$, with reference to the left $(A,L)$-module structure determined by $\partial $. Some applications to Poisson structures and to differential geometry are discussed.
LA - eng
KW - Lie-Rinehart algebras; Gertenhaber algebras; Batalin-Vilkovisky algebras; abstract left and right connections; cohomological duality for Lie-Rinehart algebras; Poisson structures
UR - http://eudml.org/doc/75288
ER -
References
top- [1] I.A. BATALIN and G.S. VILKOVISKY, Quantization of gauge theories with linearly dependent generators, Phys. Rev., D 28 (1983), 2567-2582.
- [2] I.A. BATALIN and G.S. VILKOVISKY, Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nucl. Phys. B, 234 (1984), 106-124.
- [3] I.A. BATALIN and G.S. VILKOVISKY, Existence theorem for gauge algebra, Jour. Math. Phys., 26 (1985), 172-184.
- [4] S. EVENS, J.-H. LU, and A. WEINSTEIN, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, preprint. Zbl0968.58014
- [5] M. GERSTENHABER, The cohomology structure of an associative ring, Ann. of Math., 78 (1963), 267-288. Zbl0131.27302MR28 #5102
- [6] M. GERSTENHABER and Samuel D. SCHACK, Algebras, bialgebras, quantum groups and algebraic deformations, In: Deformation theory and quantum groups with applications to mathematical physics, M. Gerstenhaber and J. Stasheff, eds. Cont. Math., AMS, Providence, 134 (1992), 51-92. Zbl0788.17009MR94b:16045
- [7] E. GETZLER, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. in Math. Phys., 195 (1994), 265-285. Zbl0807.17026MR95h:81099
- [8] G. HOCHSCHILD, Relative homological algebra, Trans. Amer. Math. Soc., 82 (1956), 246-269. Zbl0070.26903MR18,278a
- [9] J. HUEBSCHMANN, Poisson cohomology and quantization, J. für die Reine und Angew. Math., 408 (1990), 57-113. Zbl0699.53037MR92e:17027
- [10] J. HUEBSCHMANN, Duality for Lie-Rinehart algebras and the modular class, preprint dg-ga/9702008, 1997. Zbl1034.53083
- [11] D. HUSEMOLLER, J.C. MOORE and J.D. STASHEFF, Differential homological algebra and homogeneous spaces J. of Pure and Applied Algebra, 5 (1974), 113-185. Zbl0364.18008MR51 #1823
- [12] Y. KOSMANN-SCHWARZBACH, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae Mathematicae, 41 (1995), 153-165. Zbl0837.17014MR97i:17021
- [13] J.-L. KOSZUL, Crochet de Schouten-Nijenhuiset cohomologie, in E. Cartan et les Mathématiciens d'aujourd'hui, Lyon, 25-29 Juin, 1984, Astérisque, hors-série, (1985) 251-271. Zbl0615.58029
- [14] B.H. LIAN and G.J. ZUCKERMAN, New perspectives on the BRST-algebraic structure of string theory, Comm. in Math. Phys., 154 (1993), 613-646. Zbl0780.17029MR94e:81333
- [15] G. RINEHART, Differential forms for general commutative algebras, Trans. Amer. Math. Soc., 108 (1963), 195-222. Zbl0113.26204MR27 #4850
- [16] J.D. STASHEFF, Deformation theory and the Batalin-Vilkovisky master equation, in: Deformation Theory and Symplectic Geometry, Proceedings of the Ascona meeting, June 1996, D. Sternheimer, J. Rawnsley, S. Gutt, eds., Mathematical Physics Studies, Vol. 20 Kluwer Academic Publishers, Dordrecht-Boston-London, 1997, 271-284. Zbl1149.81359
- [17] A. WEINSTEIN, The modular automorphism group of a Poisson manifold, to appear in: special volume in honor of A. Lichnerowicz, J. of Geometry and Physics. Zbl0902.58013
- [18] P. XU, Gerstenhaber algebras and BV-algebras in Poisson geometry, preprint, 1997. Zbl0941.17016
Citations in EuDML Documents
top- Olga Kravchenko, Deformations of Batalin-Vilkovisky algebras
- Izu Vaisman, The BV-algebra of a Jacobi manifold
- Yvette Kosmann-Schwarzbach, Modular vector fields and Batalin-Vilkovisky algebras
- Janusz Grabowski, Giuseppe Marmo, Peter W. Michor, Homology and modular classes of Lie algebroids
- Claude Roger, Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects
- Johannes Huebschmann, Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras
- Francisco Javier Calderón Moreno, Luis Narváez Macarro, Dualité et comparaison pour les complexes de de Rham logarithmiques par rapport aux diviseurs libres
- Yvette Kosmann-Schwarzbach, Juan Monterde, Divergence operators and odd Poisson brackets
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.