On submanifolds and quotients of Poisson and Jacobi manifolds

Charles-Michel Marle

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 197-209
  • ISSN: 0137-6934

Abstract

top
We obtain conditions under which a submanifold of a Poisson manifold has an induced Poisson structure, which encompass both the Poisson submanifolds of A. Weinstein [21] and the Poisson structures on the phase space of a mechanical system with kinematic constraints of Van der Schaft and Maschke [20]. Generalizations of these results for submanifolds of a Jacobi manifold are briefly sketched.

How to cite

top

Marle, Charles-Michel. "On submanifolds and quotients of Poisson and Jacobi manifolds." Banach Center Publications 51.1 (2000): 197-209. <http://eudml.org/doc/209031>.

@article{Marle2000,
abstract = {We obtain conditions under which a submanifold of a Poisson manifold has an induced Poisson structure, which encompass both the Poisson submanifolds of A. Weinstein [21] and the Poisson structures on the phase space of a mechanical system with kinematic constraints of Van der Schaft and Maschke [20]. Generalizations of these results for submanifolds of a Jacobi manifold are briefly sketched.},
author = {Marle, Charles-Michel},
journal = {Banach Center Publications},
keywords = {submanifold; Poisson manifold; Poisson structure; mechanical system; phase space},
language = {eng},
number = {1},
pages = {197-209},
title = {On submanifolds and quotients of Poisson and Jacobi manifolds},
url = {http://eudml.org/doc/209031},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Marle, Charles-Michel
TI - On submanifolds and quotients of Poisson and Jacobi manifolds
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 197
EP - 209
AB - We obtain conditions under which a submanifold of a Poisson manifold has an induced Poisson structure, which encompass both the Poisson submanifolds of A. Weinstein [21] and the Poisson structures on the phase space of a mechanical system with kinematic constraints of Van der Schaft and Maschke [20]. Generalizations of these results for submanifolds of a Jacobi manifold are briefly sketched.
LA - eng
KW - submanifold; Poisson manifold; Poisson structure; mechanical system; phase space
UR - http://eudml.org/doc/209031
ER -

References

top
  1. [1] F. Cantrijn, M. de León and D. Martín de Diego, On almost Poisson structures in nonholonomic mechanics, Nonlinearity 12 (1999), 721-737. Zbl0984.37076
  2. [2] C. Carathéodory, Calculus of variations and partial differential equations of the first order, Vols. I and II, Holden Day, San Francisco, 1967 (first edition in German: Teubner, Berlin, 1935). 
  3. [3] A. Coste, P. Dazord and A. Weinstein, Groupoïdes symplectiques, Publ. Dép. Math. Univ. Lyon I, 2/A (1987), 1-62. Zbl0668.58017
  4. [4] P. Dazord, A. Lichnerowicz and C.-M. Marle, Structure locale des variétés de Jacobi, J. Math. pures et appl. 70 (1991), 101-152. Zbl0659.53033
  5. [5] P. Dazord and D. Sondaz, Variétés de Poisson - Algébroïdes de Lie, Publ. Dép. Math. Univ. Lyon I, 1/B (1988), 1-68. 
  6. [6] I. M. Gel'fand and I. Ya. Dorfman, Hamiltonian operators and the classical Yang-Baxter equation, Funct. Anal. Apl. 16 (1982), 241-248. 
  7. [7] M. V. Karasev and V.P. Maslov, Nonlinear Poisson brackets, geometry and quantization, Translations of Mathematical Monographs Vol. 119, American mathematical Society, Providence, 1993. Zbl0731.58002
  8. [8] Y. Kerbrat et Z. Souici-Benhammadi, Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sc. Paris 317, I (1993), 81-86. 
  9. [9] A. Kirillov, Local Lie algebras, Russian Math. Surveys 31 (1976), 55-75. Zbl0357.58003
  10. [10] W. S. Koon and J. E. Marsden, Poisson reduction of nonholonomic mechanical systems with symmetry, Proceedings of the Workshop on Nonholonomic Constraints in Dynamics (Calgary, August 26-29 1997), Reports on Mathematical Physics 42 (1998), 103-134. Zbl1120.37314
  11. [11] J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: É. Cartan et les mathématiques d'aujourd'hui, Astérisque, numéro hors série, 1985, 257-271. 
  12. [12] P. Libermann, Problème d'équivalence et géométrie symplectique, in: IIIe. rencontre de géométrie du Schnepfenried, vol. 1, 10-15 mai 1982. Astérisque 107-108 (1983), 43-68. Zbl0529.53030
  13. [13] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Reidel, Dordrecht, 1987. 
  14. [14] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), 253-300. Zbl0405.53024
  15. [15] A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. pures et appl. 57 (1978), 453-488. Zbl0407.53025
  16. [16] F. Magri and C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S. 19 (1984), University of Milan. 
  17. [17] C.-M. Marle, Reduction of constrained mechanical systems and stability of relative equilibria, Commun. Math. Phys. 174 (1995), 295-318. Zbl0859.70012
  18. [18] J. Pradines, Théorie de Lie pour les groupoïdes différentiels, calcul différentiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris, A, 264 (1967), 245-248. Zbl0154.21704
  19. [19] I. Vaisman, Lectures on the Geometry of Poisson manifolds, Birkhäuser, Basel, 1994. 
  20. [20] A. J. Van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Reports on Mathematical Physics 34 (1994), 225-233. Zbl0817.70010
  21. [21] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geometry 18 (1983), 523-557 and 22 (1985), 255. Zbl0524.58011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.