On submanifolds and quotients of Poisson and Jacobi manifolds
Banach Center Publications (2000)
- Volume: 51, Issue: 1, page 197-209
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topMarle, Charles-Michel. "On submanifolds and quotients of Poisson and Jacobi manifolds." Banach Center Publications 51.1 (2000): 197-209. <http://eudml.org/doc/209031>.
@article{Marle2000,
abstract = {We obtain conditions under which a submanifold of a Poisson manifold has an induced Poisson structure, which encompass both the Poisson submanifolds of A. Weinstein [21] and the Poisson structures on the phase space of a mechanical system with kinematic constraints of Van der Schaft and Maschke [20]. Generalizations of these results for submanifolds of a Jacobi manifold are briefly sketched.},
author = {Marle, Charles-Michel},
journal = {Banach Center Publications},
keywords = {submanifold; Poisson manifold; Poisson structure; mechanical system; phase space},
language = {eng},
number = {1},
pages = {197-209},
title = {On submanifolds and quotients of Poisson and Jacobi manifolds},
url = {http://eudml.org/doc/209031},
volume = {51},
year = {2000},
}
TY - JOUR
AU - Marle, Charles-Michel
TI - On submanifolds and quotients of Poisson and Jacobi manifolds
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 197
EP - 209
AB - We obtain conditions under which a submanifold of a Poisson manifold has an induced Poisson structure, which encompass both the Poisson submanifolds of A. Weinstein [21] and the Poisson structures on the phase space of a mechanical system with kinematic constraints of Van der Schaft and Maschke [20]. Generalizations of these results for submanifolds of a Jacobi manifold are briefly sketched.
LA - eng
KW - submanifold; Poisson manifold; Poisson structure; mechanical system; phase space
UR - http://eudml.org/doc/209031
ER -
References
top- [1] F. Cantrijn, M. de León and D. Martín de Diego, On almost Poisson structures in nonholonomic mechanics, Nonlinearity 12 (1999), 721-737. Zbl0984.37076
- [2] C. Carathéodory, Calculus of variations and partial differential equations of the first order, Vols. I and II, Holden Day, San Francisco, 1967 (first edition in German: Teubner, Berlin, 1935).
- [3] A. Coste, P. Dazord and A. Weinstein, Groupoïdes symplectiques, Publ. Dép. Math. Univ. Lyon I, 2/A (1987), 1-62. Zbl0668.58017
- [4] P. Dazord, A. Lichnerowicz and C.-M. Marle, Structure locale des variétés de Jacobi, J. Math. pures et appl. 70 (1991), 101-152. Zbl0659.53033
- [5] P. Dazord and D. Sondaz, Variétés de Poisson - Algébroïdes de Lie, Publ. Dép. Math. Univ. Lyon I, 1/B (1988), 1-68.
- [6] I. M. Gel'fand and I. Ya. Dorfman, Hamiltonian operators and the classical Yang-Baxter equation, Funct. Anal. Apl. 16 (1982), 241-248.
- [7] M. V. Karasev and V.P. Maslov, Nonlinear Poisson brackets, geometry and quantization, Translations of Mathematical Monographs Vol. 119, American mathematical Society, Providence, 1993. Zbl0731.58002
- [8] Y. Kerbrat et Z. Souici-Benhammadi, Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sc. Paris 317, I (1993), 81-86.
- [9] A. Kirillov, Local Lie algebras, Russian Math. Surveys 31 (1976), 55-75. Zbl0357.58003
- [10] W. S. Koon and J. E. Marsden, Poisson reduction of nonholonomic mechanical systems with symmetry, Proceedings of the Workshop on Nonholonomic Constraints in Dynamics (Calgary, August 26-29 1997), Reports on Mathematical Physics 42 (1998), 103-134. Zbl1120.37314
- [11] J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: É. Cartan et les mathématiques d'aujourd'hui, Astérisque, numéro hors série, 1985, 257-271.
- [12] P. Libermann, Problème d'équivalence et géométrie symplectique, in: IIIe. rencontre de géométrie du Schnepfenried, vol. 1, 10-15 mai 1982. Astérisque 107-108 (1983), 43-68. Zbl0529.53030
- [13] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Reidel, Dordrecht, 1987.
- [14] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), 253-300. Zbl0405.53024
- [15] A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. pures et appl. 57 (1978), 453-488. Zbl0407.53025
- [16] F. Magri and C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S. 19 (1984), University of Milan.
- [17] C.-M. Marle, Reduction of constrained mechanical systems and stability of relative equilibria, Commun. Math. Phys. 174 (1995), 295-318. Zbl0859.70012
- [18] J. Pradines, Théorie de Lie pour les groupoïdes différentiels, calcul différentiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris, A, 264 (1967), 245-248. Zbl0154.21704
- [19] I. Vaisman, Lectures on the Geometry of Poisson manifolds, Birkhäuser, Basel, 1994.
- [20] A. J. Van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Reports on Mathematical Physics 34 (1994), 225-233. Zbl0817.70010
- [21] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geometry 18 (1983), 523-557 and 22 (1985), 255. Zbl0524.58011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.