Classification of almost spherical pairs of compact simple Lie groups

Ihor Mykytyuk; Anatoly Stepin

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 231-241
  • ISSN: 0137-6934

Abstract

top
All homogeneous spaces G/K (G is a simple connected compact Lie group, K a connected closed subgroup) are enumerated for which arbitrary Hamiltonian flows on T*(G/K) with G-invariant Hamiltonians are integrable in the class of Noether integrals and G-invariant functions.

How to cite

top

Mykytyuk, Ihor, and Stepin, Anatoly. "Classification of almost spherical pairs of compact simple Lie groups." Banach Center Publications 51.1 (2000): 231-241. <http://eudml.org/doc/209035>.

@article{Mykytyuk2000,
abstract = {All homogeneous spaces G/K (G is a simple connected compact Lie group, K a connected closed subgroup) are enumerated for which arbitrary Hamiltonian flows on T*(G/K) with G-invariant Hamiltonians are integrable in the class of Noether integrals and G-invariant functions.},
author = {Mykytyuk, Ihor, Stepin, Anatoly},
journal = {Banach Center Publications},
keywords = {simple connected compact Lie group; symplectic manifold; moment map; spherical pairs},
language = {eng},
number = {1},
pages = {231-241},
title = {Classification of almost spherical pairs of compact simple Lie groups},
url = {http://eudml.org/doc/209035},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Mykytyuk, Ihor
AU - Stepin, Anatoly
TI - Classification of almost spherical pairs of compact simple Lie groups
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 231
EP - 241
AB - All homogeneous spaces G/K (G is a simple connected compact Lie group, K a connected closed subgroup) are enumerated for which arbitrary Hamiltonian flows on T*(G/K) with G-invariant Hamiltonians are integrable in the class of Noether integrals and G-invariant functions.
LA - eng
KW - simple connected compact Lie group; symplectic manifold; moment map; spherical pairs
UR - http://eudml.org/doc/209035
ER -

References

top
  1. [Ar] Sh. Araki, On root systems and infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 90-126. 
  2. [Bo1] N. Bourbaki, Lie groups and algebras, I-III, Mir, Moscow, 1970 (in Russian). 
  3. [Bo2] N. Bourbaki, Lie groups and algebras, IV-VI, Mir, Moscow, 1972 (in Russian). 
  4. [Bo3] N. Bourbaki, Lie groups and algebras, VII,VIII, Mir, Moscow, 1978 (in Russian). 
  5. [Br] M. Brion, Classification des espaces homogenes spheriques, Compositio Math. 63 (1987), 189-208. 
  6. [Ch] M. L. Chumak, Integrable G-invariant Hamiltonian systems and uniform spaces with simple spectrum, Func. Anal. and its Applic. 20 (1986), 91-92. 
  7. [Dy1] E. B. Dynkin, Maximal subgroups of classical groups, Trudy Moskov. Mat. Obshchestva 1 (1952), 39-151 (in Russian); Am. Math. Soc. Transl. 2 (1957), 245-378. 
  8. [Dy2] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Matem. Sbornik 30 (1952), 349-462 (in Russian); Am. Math. Soc. Transl. 2 (1957), 111-244. Zbl0048.01701
  9. [El] A. G. Elashvili, Canonical form and stationary subalgebras of points in general position of simple linear Lie groups, Func. Anal. and its Applic. 6 (1972), 51-62 (in Russian). 
  10. [GG] M. Goto and F. Grosshans, Semisimple Lie algebras, Vol. 38, Lecture Notes in Pure and Applied Math., New York and Basel, 1978. Zbl0391.17004
  11. [GS1] V. Guillemin and S. Sternberg, Multiplicity-free spaces, J. Differential Geometry 19 (1984), 31-56. Zbl0548.58017
  12. [GS2] V. Guillemin and S. Sternberg, On collective complete integrability according to the method of Thimm, Ergod. Theory and Dynam. Syst. 3 (1983), 219-230. Zbl0511.58024
  13. [GS3] V. Guillemin and S. Sternberg, Geometric asymptotics, AMS, Providence, Rhode Island, 1977. 
  14. [He] S. Helgason, Differential geometry and symmetric spaces, Academic Press, 1962. Zbl0111.18101
  15. [IW] K. Ii and S. Watanabe, Complete integrability of the geodesic flows on symmetric spaces, in: Geometry of Geodesics and Related Topics, Tokyo, K. Shiohama (ed.), North-Holland, 1984, 105-124. 
  16. [Kr] M. Kramer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129-153. Zbl0402.22006
  17. [Mi] A. S. Mishchenko, Integration of geodesic flows on symmetric spaces, Mat. Zametki 32 (1982), 257-262 (in Russian). Zbl0487.58010
  18. [My1] I. V. Mykytiuk, Homogeneous spaces with integrable G-invariant Hamiltonian flows, Math. USSR Izvestiya 23 (1984), 511-523. 
  19. [My2] I. V. Mykytiuk, On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces, Math. USSR Sbornik 57 (1987), 527-546. 
  20. [On] A. L. Onishchik, Inclusion relations between transitive compact transformation groups, Trudy Mosc. Matem. Obshchestva 11 (1962), 199-242 (in Russian). Zbl0192.12601
  21. [PM] A. K. Prykarpatsky and I. V. Mykytiuk, Algebraic integrability of nonlinear dynamical systems on manifolds. Classical and quantum aspects, Vol. 443, Math. and its Appl., Kluwer Academic Publishers, 1998. Zbl0937.37055
  22. [Ti] A. Timm, Integrable geodesic flows on homogeneous spaces, Ergod. Theory and Dynam. Syst. 1 (1981), 495-517. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.