Classifications of star products and deformations of Poisson brackets

Philippe Bonneau

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 25-29
  • ISSN: 0137-6934

Abstract

top
On the algebra of functions on a symplectic manifold we consider the pointwise product and the Poisson bracket; after a brief review of the classifications of the deformations of these structures, we give explicit formulas relating a star product to its classifying formal Poisson bivector.

How to cite

top

Bonneau, Philippe. "Classifications of star products and deformations of Poisson brackets." Banach Center Publications 51.1 (2000): 25-29. <http://eudml.org/doc/209038>.

@article{Bonneau2000,
abstract = {On the algebra of functions on a symplectic manifold we consider the pointwise product and the Poisson bracket; after a brief review of the classifications of the deformations of these structures, we give explicit formulas relating a star product to its classifying formal Poisson bivector.},
author = {Bonneau, Philippe},
journal = {Banach Center Publications},
keywords = {algebra of functions; symplectic manifold; Poisson bracket; deformations; star product; classifying formal Poisson bivector},
language = {eng},
number = {1},
pages = {25-29},
title = {Classifications of star products and deformations of Poisson brackets},
url = {http://eudml.org/doc/209038},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Bonneau, Philippe
TI - Classifications of star products and deformations of Poisson brackets
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 25
EP - 29
AB - On the algebra of functions on a symplectic manifold we consider the pointwise product and the Poisson bracket; after a brief review of the classifications of the deformations of these structures, we give explicit formulas relating a star product to its classifying formal Poisson bivector.
LA - eng
KW - algebra of functions; symplectic manifold; Poisson bracket; deformations; star product; classifying formal Poisson bivector
UR - http://eudml.org/doc/209038
ER -

References

top
  1. [BCG] M. Bertelson, M. Cahen and S. Gutt, Equivalence of star products, Classical and Quantum Gravity 14 (1997), A93-A107. Zbl0881.58021
  2. [B] P. Bonneau, Fedosov star products and one-differentiable deformations, Lett. Math. Phys. 45 (1997), 363-376. Zbl1006.53075
  3. [DWL] M. De Wilde and P. B. A. Lecomte, Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487-496. Zbl0526.58023
  4. [F1] B. V. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (1994), 213-238. Zbl0812.53034
  5. [F2] B.V. Fedosov, Deformation Quantization and Index Theory, Akademie Verlag, Berlin, 1996. Zbl0867.58061
  6. [FLS] M. Flato, A. Lichnerowicz and D. Sternheimer, Déformations 1-différentiables des algèbres de Lie attachées à une variété symplectique ou de contact, Comp. Math. 31 (1975), 47-82. Zbl0317.53039
  7. [Ge] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59-103. Zbl0123.03101
  8. [Gu] S. Gutt, Equivalence of deformations and associated *-products, Lett. Math. Phys. 3 (1979), 297-309. Zbl0424.53031
  9. [K] M. Kontsevich, Deformation quantization of Poisson manifolds I, q-alg/9709040. Zbl1058.53065
  10. [Le] P.B.A. Lecomte, Applications of the cohomology of graded Lie algebras to formal deformations of Lie algebras, Lett. Math. Phys. 13 (1987), 157-166. Zbl0628.17009
  11. [Li] A. Lichnerowicz, Existence and equivalence of twisted products on a symplectic manifold, Lett. Math. Phys. 3 (1979), 495-502. 
  12. [M] J. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45 (1949), 99-124. Zbl0031.33601
  13. [NT] R. Nest and B. Tsygan, Algebraic index theorem, Comm. Math. Phys. 172 (1995), 223-262. Zbl0887.58050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.