Classifications of star products and deformations of Poisson brackets
Banach Center Publications (2000)
- Volume: 51, Issue: 1, page 25-29
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topBonneau, Philippe. "Classifications of star products and deformations of Poisson brackets." Banach Center Publications 51.1 (2000): 25-29. <http://eudml.org/doc/209038>.
@article{Bonneau2000,
abstract = {On the algebra of functions on a symplectic manifold we consider the pointwise product and the Poisson bracket; after a brief review of the classifications of the deformations of these structures, we give explicit formulas relating a star product to its classifying formal Poisson bivector.},
author = {Bonneau, Philippe},
journal = {Banach Center Publications},
keywords = {algebra of functions; symplectic manifold; Poisson bracket; deformations; star product; classifying formal Poisson bivector},
language = {eng},
number = {1},
pages = {25-29},
title = {Classifications of star products and deformations of Poisson brackets},
url = {http://eudml.org/doc/209038},
volume = {51},
year = {2000},
}
TY - JOUR
AU - Bonneau, Philippe
TI - Classifications of star products and deformations of Poisson brackets
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 25
EP - 29
AB - On the algebra of functions on a symplectic manifold we consider the pointwise product and the Poisson bracket; after a brief review of the classifications of the deformations of these structures, we give explicit formulas relating a star product to its classifying formal Poisson bivector.
LA - eng
KW - algebra of functions; symplectic manifold; Poisson bracket; deformations; star product; classifying formal Poisson bivector
UR - http://eudml.org/doc/209038
ER -
References
top- [BCG] M. Bertelson, M. Cahen and S. Gutt, Equivalence of star products, Classical and Quantum Gravity 14 (1997), A93-A107. Zbl0881.58021
- [B] P. Bonneau, Fedosov star products and one-differentiable deformations, Lett. Math. Phys. 45 (1997), 363-376. Zbl1006.53075
- [DWL] M. De Wilde and P. B. A. Lecomte, Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487-496. Zbl0526.58023
- [F1] B. V. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (1994), 213-238. Zbl0812.53034
- [F2] B.V. Fedosov, Deformation Quantization and Index Theory, Akademie Verlag, Berlin, 1996. Zbl0867.58061
- [FLS] M. Flato, A. Lichnerowicz and D. Sternheimer, Déformations 1-différentiables des algèbres de Lie attachées à une variété symplectique ou de contact, Comp. Math. 31 (1975), 47-82. Zbl0317.53039
- [Ge] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59-103. Zbl0123.03101
- [Gu] S. Gutt, Equivalence of deformations and associated *-products, Lett. Math. Phys. 3 (1979), 297-309. Zbl0424.53031
- [K] M. Kontsevich, Deformation quantization of Poisson manifolds I, q-alg/9709040. Zbl1058.53065
- [Le] P.B.A. Lecomte, Applications of the cohomology of graded Lie algebras to formal deformations of Lie algebras, Lett. Math. Phys. 13 (1987), 157-166. Zbl0628.17009
- [Li] A. Lichnerowicz, Existence and equivalence of twisted products on a symplectic manifold, Lett. Math. Phys. 3 (1979), 495-502.
- [M] J. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45 (1949), 99-124. Zbl0031.33601
- [NT] R. Nest and B. Tsygan, Algebraic index theorem, Comm. Math. Phys. 172 (1995), 223-262. Zbl0887.58050
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.