Nonlocal elliptic problems

Andrzej Krzywicki; Tadeusz Nadzieja

Banach Center Publications (2000)

  • Volume: 52, Issue: 1, page 147-152
  • ISSN: 0137-6934

Abstract

top
Some conditions for the existence and uniqueness of solutions of the nonlocal elliptic problem - Δ φ = M f ( φ ) / ( ( Ω f ( φ ) ) p ) , φ | Ω = 0 are given.

How to cite

top

Krzywicki, Andrzej, and Nadzieja, Tadeusz. "Nonlocal elliptic problems." Banach Center Publications 52.1 (2000): 147-152. <http://eudml.org/doc/209052>.

@article{Krzywicki2000,
abstract = {Some conditions for the existence and uniqueness of solutions of the nonlocal elliptic problem $-Δφ = M f(φ)/((∫_\{Ω\} f(φ))^p)$, $φ|_\{Ω\}=0$ are given.},
author = {Krzywicki, Andrzej, Nadzieja, Tadeusz},
journal = {Banach Center Publications},
keywords = {nonlinear nonlocal elliptic equations; Green function; existence; uniqueness},
language = {eng},
number = {1},
pages = {147-152},
title = {Nonlocal elliptic problems},
url = {http://eudml.org/doc/209052},
volume = {52},
year = {2000},
}

TY - JOUR
AU - Krzywicki, Andrzej
AU - Nadzieja, Tadeusz
TI - Nonlocal elliptic problems
JO - Banach Center Publications
PY - 2000
VL - 52
IS - 1
SP - 147
EP - 152
AB - Some conditions for the existence and uniqueness of solutions of the nonlocal elliptic problem $-Δφ = M f(φ)/((∫_{Ω} f(φ))^p)$, $φ|_{Ω}=0$ are given.
LA - eng
KW - nonlinear nonlocal elliptic equations; Green function; existence; uniqueness
UR - http://eudml.org/doc/209052
ER -

References

top
  1. [A] J. J. Aly, Thermodynamics of a two-dimensional self-gravitating system, Physical Review E 49 (1994), 3771-3783. 
  2. [B] F. Bavaud, Equilibrium properties of the Vlasov functional: the generalized Poisson-Boltzmann-Emden equation, Rev. Mod. Phys. 63 (1991), 129-148. 
  3. [BL] J. W. Bebernes and A. A. Lacey, Global existence and finite-time blow-up for a class of nonlocal parabolic problems, Adv. Diff. Equations 2 (1997), 927-953. Zbl1023.35512
  4. [BT] J. W. Bebernes and P. Talaga, Nonlocal problems modelling shear banding, Comm. Appl. Nonlinear Analysis 3 (1996), 79-103. Zbl0858.35052
  5. [BHN] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Analysis T.M.A. 23 (1994), 1189-1209. Zbl0814.35054
  6. [BKN] P. Biler, A. Krzywicki and T. Nadzieja, Self-interaction of Brownian particles coupled with thermodynamic processes, Reports Math. Physics 42 (1998), 359-372. Zbl1010.82028
  7. [BN1] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math. 66 (1993), 131-145. Zbl0818.35046
  8. [BN2] P. Biler and T. Nadzieja, Nonlocal parabolic problems in statistical mechanics, Nonlinear Analysis T. M. A. 30 (1997), 5343-5350. Zbl0892.35073
  9. [BN3] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, Colloq. Math. 66 (1994), 319-334. Zbl0817.35041
  10. [CLMP] E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys. 143 (1992), 501-525. Zbl0745.76001
  11. [C] J. A. Carrillo, On a nonlocal elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction, Nonlinear Analysis T. M. A. 32 (1998), 97-115. Zbl0895.35037
  12. [GL] D. Gogny and P. L. Lions, Sur les états d'équilibre pour les densités électroniques dans les plasmas, Math. Modelling and Numerical Analysis, 23 (1989), 137-153. Zbl0665.76145
  13. [GW] M. Grüter and K. O. Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), 303-342. Zbl0485.35031
  14. [KN1] A. Krzywicki and T. Nadzieja, Poisson-Boltzmann equation in 3 , Ann. Polon. Math. 54 (1991), 125-134. Zbl0733.35039
  15. [KN2] A. Krzywicki and T. Nadzieja, Some results concerning Poisson-Boltzmann equation, Zastosowania Matematyki 21 (1991), 265-272. Zbl0756.35029
  16. [KN3] A. Krzywicki and T. Nadzieja, A note on the Poisson-Boltzmann equation, Zastosowania Matematyki 21 (1993), 591-595. Zbl0780.35033
  17. [L] A. A. Lacey, Thermal runaway in a nonlocal problem modelling Ohmic heating: Part I: Model derivation and some special cases, Euro. J. Appl. Math. 6 (1995), 129-148. 
  18. [LU] O. A. Ladyženskaja and N. N. Ural'ceva, Linear and quasilinear elliptic equations (in Russian), Moskva 1973. 
  19. [S] R. F. Streater, A gas of Brownian particles in statistical dynamics, J. Stat. Phys. 88 (1997), 447-469. Zbl0939.82026
  20. [T] D. E. Tzanetis, Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating, 1-24, Preprint. Zbl0993.35018
  21. [W] G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992), 355-391. Zbl0774.76069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.