Existence and nonexistence of solutions for a model of gravitational interaction of particles, I

Piotr Biler; Tadeusz Nadzieja

Colloquium Mathematicae (1993)

  • Volume: 66, Issue: 2, page 319-334
  • ISSN: 0010-1354

Abstract

top
We study the existence of stationary and evolution solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles.

How to cite

top

Biler, Piotr, and Nadzieja, Tadeusz. "Existence and nonexistence of solutions for a model of gravitational interaction of particles, I." Colloquium Mathematicae 66.2 (1993): 319-334. <http://eudml.org/doc/210252>.

@article{Biler1993,
abstract = {We study the existence of stationary and evolution solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles.},
author = {Biler, Piotr, Nadzieja, Tadeusz},
journal = {Colloquium Mathematicae},
keywords = {nonlinear boundary conditions; stationary solutions; global existence of solutions; parabolic-elliptic system; nonlinear no-flux condition; blow-up; Chandrasekhar equation},
language = {eng},
number = {2},
pages = {319-334},
title = {Existence and nonexistence of solutions for a model of gravitational interaction of particles, I},
url = {http://eudml.org/doc/210252},
volume = {66},
year = {1993},
}

TY - JOUR
AU - Biler, Piotr
AU - Nadzieja, Tadeusz
TI - Existence and nonexistence of solutions for a model of gravitational interaction of particles, I
JO - Colloquium Mathematicae
PY - 1993
VL - 66
IS - 2
SP - 319
EP - 334
AB - We study the existence of stationary and evolution solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles.
LA - eng
KW - nonlinear boundary conditions; stationary solutions; global existence of solutions; parabolic-elliptic system; nonlinear no-flux condition; blow-up; Chandrasekhar equation
UR - http://eudml.org/doc/210252
ER -

References

top
  1. [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. 
  2. [2] F. Bavaud, Equilibrium properties of the Vlasov functional: the generalized Poisson-Boltzmann-Emden equation, Rev. Modern Phys. 63 (1991), 129-149. 
  3. [3] M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489-539. 
  4. [4] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal. 19 (1992), 1121-1136. Zbl0781.35025
  5. [5] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Mathematical Institute, University of Wrocław, Report no. 23 (1992), 1-24 . Zbl0814.35054
  6. [6] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, preprint, 1993. Zbl0832.35015
  7. [7] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math. 66 (1993), 131-145. Zbl0818.35046
  8. [8] E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (1992), 501-525. Zbl0745.76001
  9. [9] P. Cherrier, Meilleures constantes dans des inégalités relatives aux espaces de Sobolev, Bull. Sci. Math. 108 (1984), 225-262. Zbl0547.58017
  10. [10] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1, Springer, Berlin, 1990. Zbl0683.35001
  11. [11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. Zbl0562.35001
  12. [12] A. Krzywicki and T. Nadzieja, Some results concerning the Poisson-Boltzmann equation, Zastos. Mat. 21 (1991), 265-272. Zbl0756.35029
  13. [13] A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. Zbl0754.35142
  14. [14] A. Krzywicki and T. Nadzieja, A note on the Poisson-Boltzmann equation, Zastos. Mat. 21 (1993), 591-595. Zbl0780.35033
  15. [15] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1988. 
  16. [16] T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 367-398. Zbl0785.35045
  17. [17] S. Wang, Some nonlinear elliptic equations with subcritical growth and critical behavior, Houston J. Math. 16 (1990), 559-572. Zbl0741.35016
  18. [18] G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992), 355-391. Zbl0774.76069
  19. [19] G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Analyse Math. 59 (1992), 251-272. Zbl0806.35134

Citations in EuDML Documents

top
  1. Ryo Kobayashi, Masakazu Yamamoto, Shuichi Kawashima, Asymptotic stability of stationary solutions to the drift-diffusion model in the whole space
  2. Fujie, Kentarou, Senba, Takasi, A generalization of the Keller-Segel system to higher dimensions from a structural viewpoint
  3. Piotr Biler, Danielle Hilhorst, Tadeusz Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II
  4. Piotr Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles, III
  5. Piotr Biler, Tadeusz Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I
  6. Tadeusz Nadzieja, A model of a radially symmetric cloud of self-attracting particles
  7. Piotr Biler, Tadeusz Nadzieja, Growth and accretion of mass in an astrophysical model, II
  8. Piotr Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation
  9. Andrzej Krzywicki, Tadeusz Nadzieja, Nonlocal elliptic problems
  10. Andrzej Raczyński, On a nonlocal elliptic problem

NotesEmbed ?

top

You must be logged in to post comments.