A note on primes p with σ ( p m ) = z n

Maohua Le

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 2, page 193-196
  • ISSN: 0010-1354

How to cite

top

Le, Maohua. "A note on primes p with $σ(p^m)=z^n$." Colloquium Mathematicae 62.2 (1991): 193-196. <http://eudml.org/doc/210108>.

@article{Le1991,
author = {Le, Maohua},
journal = {Colloquium Mathematicae},
keywords = {sum of divisors function; prime powers},
language = {eng},
number = {2},
pages = {193-196},
title = {A note on primes p with $σ(p^m)=z^n$},
url = {http://eudml.org/doc/210108},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Le, Maohua
TI - A note on primes p with $σ(p^m)=z^n$
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 2
SP - 193
EP - 196
LA - eng
KW - sum of divisors function; prime powers
UR - http://eudml.org/doc/210108
ER -

References

top
  1. [1] J. Chidambaraswawy and P. Krishnaiah, On primes p with σ ( p α ) = m 2 , Proc. Amer. Math. Soc. 101 (1987), 625-628. 
  2. [2] C. F. Gauss, Disquisitiones Arithmeticae, Fleischer, Leipzig 1801. 
  3. [3] K. Inkeri, On the diophantine equation a ( x n - 1 ) / ( x - 1 ) = y m , Acta Arith. 21 (1972), 299-311. Zbl0228.10017
  4. [4] W. Ljunggren, Some theorems on indeterminate equations of the form ( x n - 1 ) / ( x - 1 ) = y q , Norsk. Mat. Tidsskr. 25 (1943), 17-20 (in Norwegian). Zbl0028.00901
  5. [5] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 289-321. 
  6. [6] T. Nagell, Sur l’équation indéterminée ( x n - 1 ) / ( x - 1 ) = y 2 , Norsk Mat. Forenings Skr. (I) No. 3 (1921), 17 pp. 
  7. [7] A. Rotkiewicz, Note on the diophantine equation 1 + x + x 2 + . . . + x n = y m , Elemente Math. 42 (1987), 76. Zbl0703.11016
  8. [8] A. Takaku, Prime numbers such that the sums of the divisors of their powers are perfect squares, Colloq. Math. 49 (1984), 117-121. Zbl0551.10004
  9. [9] A. Takaku, Prime numbers such that the sums of the divisors of their powers are perfect power numbers, Colloq. Math. 52 (1987), 319-323. Zbl0624.10004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.