On semigroups generated by subelliptic operators on homogeneous groups
Colloquium Mathematicae (1993)
- Volume: 64, Issue: 2, page 215-231
- ISSN: 0010-1354
Access Full Article
topHow to cite
topReferences
top- [DH] J. Dziubański and A. Hulanicki, On semigroups generated by left-invariant positive differential operators on nilpotent Lie groups, Studia Math. 94 (1989), 81-95. Zbl0701.47020
- [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, 1982. Zbl0508.42025
- [G] P. Głowacki, Stable semigroups of measures as commutative approximate identities on homogeneous groups, Invent. Math. 83 (1986), 557-587. Zbl0595.43006
- [Go] R. Goodman, Singular integral operators on nilpotent Lie groups, Ark. Mat. 18 (1980), 1-11. Zbl0449.43008
- [He] W. Hebisch, Sharp pointwise estimate for the kernels of the semigroup generated by sums of even powers of vector fields on homogeneous groups, Studia Math. 95 (1989), 93-106. Zbl0693.22005
- [HN] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958. Zbl0423.35040
- [H] A. Hulanicki, Subalgebra of associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. Zbl0316.43005
- [H1] A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266. Zbl0595.43007
- [NS] E. Nelson and W. F. Stinespring, Representation of elliptic operators in an enveloping algebra, Amer. J. Math. 81 (1959), 547-560. Zbl0092.32103
- [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York 1983. Zbl0516.47023
Citations in EuDML Documents
top- Pascal Auscher, A. ter Elst, Derek Robinson, On positive Rockland operators
- Jacek Dziubański, Jacek Zienkiewicz, Smoothness of densities of semigroups of measures on homogeneous groups
- Jacek Dziubański, Waldemar Hebisch, Jacek Zienkiewicz, Note on semigroups generated by positive Rockland operators on graded homogeneous groups