Smoothness of densities of semigroups of measures on homogeneous groups

Jacek Dziubański; Jacek Zienkiewicz

Colloquium Mathematicae (1993)

  • Volume: 66, Issue: 2, page 227-242
  • ISSN: 0010-1354

How to cite

top

Dziubański, Jacek, and Zienkiewicz, Jacek. "Smoothness of densities of semigroups of measures on homogeneous groups." Colloquium Mathematicae 66.2 (1993): 227-242. <http://eudml.org/doc/210245>.

@article{Dziubański1993,
author = {Dziubański, Jacek, Zienkiewicz, Jacek},
journal = {Colloquium Mathematicae},
keywords = {positive symmetric measures; homogeneous group; Lévy measure; Lie algebra; nonnegative symmetric function; holomorphic semigroups; Hilbert spaces; differential operator; Malliavin calculus; jump processes},
language = {eng},
number = {2},
pages = {227-242},
title = {Smoothness of densities of semigroups of measures on homogeneous groups},
url = {http://eudml.org/doc/210245},
volume = {66},
year = {1993},
}

TY - JOUR
AU - Dziubański, Jacek
AU - Zienkiewicz, Jacek
TI - Smoothness of densities of semigroups of measures on homogeneous groups
JO - Colloquium Mathematicae
PY - 1993
VL - 66
IS - 2
SP - 227
EP - 242
LA - eng
KW - positive symmetric measures; homogeneous group; Lévy measure; Lie algebra; nonnegative symmetric function; holomorphic semigroups; Hilbert spaces; differential operator; Malliavin calculus; jump processes
UR - http://eudml.org/doc/210245
ER -

References

top
  1. [BG] T. Byczkowski and P. Graczyk, Malliavin calculus for stable processes on Heisenberg group, Probab. Math. Statist. 13 (1992), 277-292. Zbl0785.60028
  2. [Da] E. B. Davies, One Parameter Semigroups, Academic Press, 1980. Zbl0457.47030
  3. [Du] M. Duflo, Représentations de semi-groupes de mesures sur un groupe localement compact, Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 225-249. Zbl0368.22006
  4. [Dz] J. Dziubański, On semigroups generated by subelliptic operators on homogeneous groups, Colloq. Math. 64 (1993), 215-231. Zbl0837.43010
  5. [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, 1982. Zbl0508.42025
  6. [G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582. Zbl0595.43006
  7. [G1] P. Głowacki, Lipschitz continuity of densities of stable semigroups of measures, Colloq. Math. 66 (1993), 29-47. Zbl0837.43009
  8. [GH] P. Głowacki and A. Hulanicki, A semi-group of probability measures with non-smooth differentiable densities on a Lie group, ibid. 51 (1987), 131-139. Zbl0629.43001
  9. [HS] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236. Zbl0723.22007
  10. [HN] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958. Zbl0423.35040
  11. [H] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101. Zbl0462.28009
  12. [Hu] G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293. Zbl0073.12402
  13. [S] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, 1970. Zbl0193.10502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.