A theorem of O'Nan for finite linear spaces

P. Zieschang

Colloquium Mathematicae (1993)

  • Volume: 65, Issue: 1, page 13-24
  • ISSN: 0010-1354

How to cite

top

Zieschang, P.. "A theorem of O'Nan for finite linear spaces." Colloquium Mathematicae 65.1 (1993): 13-24. <http://eudml.org/doc/210198>.

@article{Zieschang1993,
author = {Zieschang, P.},
journal = {Colloquium Mathematicae},
keywords = {block stabilizers; doubly transitive permutation groups; flag transitive automorphism groups; finite linear spaces; point-stabilizers; trivial intersection sets},
language = {eng},
number = {1},
pages = {13-24},
title = {A theorem of O'Nan for finite linear spaces},
url = {http://eudml.org/doc/210198},
volume = {65},
year = {1993},
}

TY - JOUR
AU - Zieschang, P.
TI - A theorem of O'Nan for finite linear spaces
JO - Colloquium Mathematicae
PY - 1993
VL - 65
IS - 1
SP - 13
EP - 24
LA - eng
KW - block stabilizers; doubly transitive permutation groups; flag transitive automorphism groups; finite linear spaces; point-stabilizers; trivial intersection sets
UR - http://eudml.org/doc/210198
ER -

References

top
  1. [1] F. Buekenhout, A. Delandtsheer, and J. Doyen, Finite linear spaces with flag-transitive groups, J. Combin. Theory Ser. A 49 (1988), 268-293. Zbl0658.20001
  2. [2] A. R. Camina, Permutation groups of even degree whose 2-point stabilisers are isomorphic cyclic 2-groups, Math. Z. 165 (1979), 239-242. Zbl0379.20003
  3. [3] A. R. Camina, Groups acting flag-transitively on designs, Arch. Math. (Basel) 32 (1979), 424-430. Zbl0423.20003
  4. [4] P. Dembowski, Finite Geometries, Springer, Berlin 1968. 
  5. [5] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 771-1029. Zbl0124.26402
  6. [6] G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420. Zbl0145.02802
  7. [7] D. Gorenstein, Finite Groups, Harper & Row, New York 1968. 
  8. [8] H. Kurzweil, Endliche Gruppen, Springer, Berlin 1977. 
  9. [9] M. O’Nan, A characterization of L n ( q ) as a permutation group, Math. Z. 127 (1972), 301-314. Zbl0258.20003
  10. [10] M. O'Nan, Normal structure of the one-point stabilizer of a doubly-transitive permutation group. I, Trans. Amer. Math. Soc. 214 (1975), 1-42. 
  11. [11] T. G. Ostrom and A. Wagner, On projective and affine planes with transitive collineation groups, Math. Z. 71 (1959), 186-199. Zbl0085.14302
  12. [12] H. Wielandt, Finite Permutation Groups, Academic Press, New York 1964. Zbl0138.02501
  13. [13] P.-H. Zieschang, Über eine Klasse von Permutationsgruppen, Dissertation, Univ. Kiel, 1983. 
  14. [14] P.-H. Zieschang, Fahnentransitive Automorphismengruppen von Blockplänen, Geom. Dedicata 18 (1985), 173-180. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.