The space of Whitney levels is homeomorphic to
Colloquium Mathematicae (1993)
- Volume: 65, Issue: 1, page 1-11
- ISSN: 0010-1354
Access Full Article
topHow to cite
topReferences
top- [1] W. J. Charatonik, A metric on hyperspaces defined by Whitney maps, Proc. Amer. Math. Soc. 94 (1985), 535-538. Zbl0567.54007
- [2] D. W. Curtis, Application of a selection theorem to hyperspace contractibility, Canad. J. Math. 37 (1985), 747-759. Zbl0563.54008
- [3] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. Zbl0043.38105
- [4] J. Dugundji, Topology, Allyn and Bacon, 1966.
- [5] C. Eberhart and S. B. Nadler, The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. 19 (1971), 1027-1034. Zbl0235.54037
- [6] A. Illanes, Spaces of Whitney maps, Pacific J. Math. 139 (1989), 67-77. Zbl0674.54012
- [7] A. Illanes, The space of Whitney levels, Topology Appl. 40 (1991), 157-169. Zbl0761.54010
- [8] A. Illanes, The space of Whitney decompositions, Ann. Inst. Mat. Univ. Autónoma México 28 (1988), 47-61. Zbl0718.54025
- [9] S. B. Nadler, Hyperspaces of Sets, Dekker, 1978. Zbl0432.54007
- [10] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262. Zbl0468.57015
- [11] L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469. Zbl0457.54008
- [12] S. Willard, General Topology, Addison-Wesley, 1970.