A characterization of dendroids by the n-connectedness of the Whitney levels

Alejandro Illanes

Fundamenta Mathematicae (1992)

  • Volume: 140, Issue: 2, page 157-174
  • ISSN: 0016-2736

Abstract

top
Let X be a continuum. Let C(X) denote the hyperspace of all subcontinua of X. In this paper we prove that the following assertions are equivalent: (a) X is a dendroid, (b) each positive Whitney level in C(X) is 2-connected, and (c) each positive Whitney level in C(X) is ∞-connected (n-connected for each n ≥ 0).

How to cite

top

Illanes, Alejandro. "A characterization of dendroids by the n-connectedness of the Whitney levels." Fundamenta Mathematicae 140.2 (1992): 157-174. <http://eudml.org/doc/211935>.

@article{Illanes1992,
abstract = {Let X be a continuum. Let C(X) denote the hyperspace of all subcontinua of X. In this paper we prove that the following assertions are equivalent: (a) X is a dendroid, (b) each positive Whitney level in C(X) is 2-connected, and (c) each positive Whitney level in C(X) is ∞-connected (n-connected for each n ≥ 0).},
author = {Illanes, Alejandro},
journal = {Fundamenta Mathematicae},
keywords = {Whitney map; Whitney property; continuum; dendroid; Whitney level},
language = {eng},
number = {2},
pages = {157-174},
title = {A characterization of dendroids by the n-connectedness of the Whitney levels},
url = {http://eudml.org/doc/211935},
volume = {140},
year = {1992},
}

TY - JOUR
AU - Illanes, Alejandro
TI - A characterization of dendroids by the n-connectedness of the Whitney levels
JO - Fundamenta Mathematicae
PY - 1992
VL - 140
IS - 2
SP - 157
EP - 174
AB - Let X be a continuum. Let C(X) denote the hyperspace of all subcontinua of X. In this paper we prove that the following assertions are equivalent: (a) X is a dendroid, (b) each positive Whitney level in C(X) is 2-connected, and (c) each positive Whitney level in C(X) is ∞-connected (n-connected for each n ≥ 0).
LA - eng
KW - Whitney map; Whitney property; continuum; dendroid; Whitney level
UR - http://eudml.org/doc/211935
ER -

References

top
  1. [1] C. Eberhart and S. B. Nadler, Jr., The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. 19 (1971), 1027-1034. Zbl0235.54037
  2. [2] S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. 26 (1936), 61-112. Zbl0013.42002
  3. [3] A. Illanes, Arc-smoothness and contractibility in Whitney levels, Proc. Amer. Math. Soc. 110 (1990), 1069-1074. Zbl0707.54008
  4. [4] A. Illanes, Spaces of Whitney maps, Pacific J. Math. 139 (1989), 67-77. Zbl0674.54012
  5. [5] A. Illanes, The space of Whitney levels, Topology Appl., to appear. Zbl0761.54010
  6. [6] A. Illanes, Spaces of Whitney decompositions, An. Inst. Mat. Univ. Nac. Autónoma México 28 (1988), 47-61. 
  7. [7] A. Illanes, The space of Whitney levels is homeomorphic to l 2 , Colloq. Math., to appear. Zbl0819.54016
  8. [8] A. Illanes, Arc smoothness is not a Whitney reversible property, Aportaciones Mat.: Comun. 8 (1990), 65-80. 
  9. [9] J. Krasinkiewicz and S. B. Nadler, Jr., Whitney properties, Fund. Math. 98 (1978), 165-180. 
  10. [10] S. Mardešić, Equivalence of singular and Čech homology for ANR-s. Application to unicoherence, ibid. 46 (1958), 29-45. Zbl0085.37303
  11. [11] S. B. Nadler, Jr., Some basic connectivity properties of Whitney maps inverses in C(X), in: Studies in Topology, Proc. Charlotte Topology Conference (University of North Carolina at Charlotte, 1974), Academic Press, New York 1975, 393-410. 
  12. [12] S. B. Nadler, Hyperspaces of Sets, Dekker, New York 1978. Zbl0432.54007
  13. [13] A. Petrus, Contractibility of Whitney continua in C(X), Gen. Topology Appl. 9 (1978), 275-288. Zbl0405.54006
  14. [14] L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469. Zbl0457.54008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.