Points entiers sur les courbes de genre 0

Dimitrios Poulakis

Colloquium Mathematicae (1993)

  • Volume: 66, Issue: 1, page 1-7
  • ISSN: 0010-1354

How to cite

top

Poulakis, Dimitrios. "Points entiers sur les courbes de genre 0." Colloquium Mathematicae 66.1 (1993): 1-7. <http://eudml.org/doc/210230>.

@article{Poulakis1993,
author = {Poulakis, Dimitrios},
journal = {Colloquium Mathematicae},
keywords = {hauteur; point S-entier; courbe algébrique; algebraic curve; finiteness; height; explicit upper bound; -integral points; Thue equation},
language = {fre},
number = {1},
pages = {1-7},
title = {Points entiers sur les courbes de genre 0},
url = {http://eudml.org/doc/210230},
volume = {66},
year = {1993},
}

TY - JOUR
AU - Poulakis, Dimitrios
TI - Points entiers sur les courbes de genre 0
JO - Colloquium Mathematicae
PY - 1993
VL - 66
IS - 1
SP - 1
EP - 7
LA - fre
KW - hauteur; point S-entier; courbe algébrique; algebraic curve; finiteness; height; explicit upper bound; -integral points; Thue equation
UR - http://eudml.org/doc/210230
ER -

References

top
  1. [1] B. Brindza, On the generators of S-unit group in algebraic number fields, Bull. Austral. Math. Soc. 43 (1991), 325-329. Zbl0711.11040
  2. [2] K. Győry, On S-integral solutions of norm forms, discriminant forms and index form equations, Studia Sci. Math. Hungar. 16 (1981), 149-161. Zbl0518.10019
  3. [3] K. Győry, On the solutions of linear diophantine equations in algebraic integers of bounded norm, Ann. Univ. Budapest Eötvos Sect. Math. 22-23 (1970-1980), 225-233. 
  4. [4] S. Lang, Algebraic Number Theory, Addison-Wesley, 1970. Zbl0211.38404
  5. [5] S. Lang, Fundamentals of Diophantine Geometry, Springer, New York, 1983. Zbl0528.14013
  6. [6] W. Masser and G. Wüstholtz, Fields of large transcendence degree generated by values of elliptic functions, Invent. Math. 72 (1983), 407-464. Zbl0516.10027
  7. [7] M. Newmann, Bounds for the class numbers, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, R.I., 1965, 70-77. 
  8. [8] W. M. Schmidt, Eisenstein theorem on power series expansions of algebraic functions, Acta Arith. 56 (1990), 161-179. Zbl0659.12003
  9. [9] W. M. Schmidt, Construction and estimation of bases in function fields, J. Number Theory 39 (1991), 181-224. Zbl0764.11046
  10. [10] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. Zbl0747.11026
  11. [11] J.-P. Serre, Lectures on the Mordell-Weil Theorem, Vieweg, 1989. 
  12. [12] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. 1929. 
  13. [13] C. L. Siegel, Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1969 (9), 71-86. Zbl0186.36703
  14. [14] J. H. Silvermann, The Arithmetic of Elliptic Curves, Springer, New York, 1986. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.