The support of a function with thin spectrum

Kathryn Hare

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 1, page 147-154
  • ISSN: 0010-1354

Abstract

top
We prove that if E Ĝ does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty S G there exists a constant c > 0 such that f 1 S 2 c f 2 for all f L 2 ( G ) whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.

How to cite

top

Hare, Kathryn. "The support of a function with thin spectrum." Colloquium Mathematicae 67.1 (1994): 147-154. <http://eudml.org/doc/210257>.

@article{Hare1994,
abstract = {We prove that if $E ⊆ Ĝ$ does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty $S ⊆ G$ there exists a constant c > 0 such that $∥ f1_S ∥_2 ≥ c ∥ f ∥ _2$ for all $f ∈ L^2(G)$ whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.},
author = {Hare, Kathryn},
journal = {Colloquium Mathematicae},
keywords = {subtransversal; associatedness; parallelepipeds},
language = {eng},
number = {1},
pages = {147-154},
title = {The support of a function with thin spectrum},
url = {http://eudml.org/doc/210257},
volume = {67},
year = {1994},
}

TY - JOUR
AU - Hare, Kathryn
TI - The support of a function with thin spectrum
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 1
SP - 147
EP - 154
AB - We prove that if $E ⊆ Ĝ$ does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty $S ⊆ G$ there exists a constant c > 0 such that $∥ f1_S ∥_2 ≥ c ∥ f ∥ _2$ for all $f ∈ L^2(G)$ whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.
LA - eng
KW - subtransversal; associatedness; parallelepipeds
UR - http://eudml.org/doc/210257
ER -

References

top
  1. [1] A. Bonami, Etude des coefficients de Fourier des fonctions de L p ( G ) , Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335-402. Zbl0195.42501
  2. [2] J. Fournier, Uniformizable Λ(2) sets and uniform integrability, Colloq. Math. 51 (1987), 119-129. Zbl0663.42014
  3. [3] K. Hare, Strict-2-associatedness for thin sets, ibid. 56 (1988), 367-381. Zbl0725.43008
  4. [4] K. Hare, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), 143-155. Zbl0603.43003
  5. [5] B. Host et F. Parreau, Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à l'infini, Colloq. Math. 41 (1979), 285-289. Zbl0466.43005
  6. [6] G. W. Johnson and G. S. Woodward, On p-Sidon sets, Indiana Univ. Math. J. 24 (1974), 161-167. Zbl0285.43006
  7. [7] I. Klemes, Seminar notes on the transforms of some singular measures, private communication, 1990. 
  8. [8] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. 26, Amer. Math. Soc., Providence, R.I., 1940. 
  9. [9] J. Lopez and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975. 
  10. [10] S. Mandelbrojt, Séries de Fourier et classes quasi-analytiques de fonctions, Gauthier-Villars, Paris, 1935. Zbl0013.11006
  11. [11] I. Miheev, On lacunary series, Math. USSR-Sb. 27 (1975), 481-502; translated from Mat. Sb. 98 (140) (1975), 538-563. Zbl0371.42006
  12. [12] I. Miheev, Trigonometric series with gaps, Anal. Math. 9 (1983), 43-55. Zbl0544.10062
  13. [13] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. Zbl0091.05802
  14. [14] A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.