The support of a function with thin spectrum
Colloquium Mathematicae (1994)
- Volume: 67, Issue: 1, page 147-154
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topHare, Kathryn. "The support of a function with thin spectrum." Colloquium Mathematicae 67.1 (1994): 147-154. <http://eudml.org/doc/210257>.
@article{Hare1994,
abstract = {We prove that if $E ⊆ Ĝ$ does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty $S ⊆ G$ there exists a constant c > 0 such that $∥ f1_S ∥_2 ≥ c ∥ f ∥ _2$ for all $f ∈ L^2(G)$ whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.},
author = {Hare, Kathryn},
journal = {Colloquium Mathematicae},
keywords = {subtransversal; associatedness; parallelepipeds},
language = {eng},
number = {1},
pages = {147-154},
title = {The support of a function with thin spectrum},
url = {http://eudml.org/doc/210257},
volume = {67},
year = {1994},
}
TY - JOUR
AU - Hare, Kathryn
TI - The support of a function with thin spectrum
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 1
SP - 147
EP - 154
AB - We prove that if $E ⊆ Ĝ$ does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty $S ⊆ G$ there exists a constant c > 0 such that $∥ f1_S ∥_2 ≥ c ∥ f ∥ _2$ for all $f ∈ L^2(G)$ whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.
LA - eng
KW - subtransversal; associatedness; parallelepipeds
UR - http://eudml.org/doc/210257
ER -
References
top- [1] A. Bonami, Etude des coefficients de Fourier des fonctions de , Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335-402. Zbl0195.42501
- [2] J. Fournier, Uniformizable Λ(2) sets and uniform integrability, Colloq. Math. 51 (1987), 119-129. Zbl0663.42014
- [3] K. Hare, Strict-2-associatedness for thin sets, ibid. 56 (1988), 367-381. Zbl0725.43008
- [4] K. Hare, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), 143-155. Zbl0603.43003
- [5] B. Host et F. Parreau, Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à l'infini, Colloq. Math. 41 (1979), 285-289. Zbl0466.43005
- [6] G. W. Johnson and G. S. Woodward, On p-Sidon sets, Indiana Univ. Math. J. 24 (1974), 161-167. Zbl0285.43006
- [7] I. Klemes, Seminar notes on the transforms of some singular measures, private communication, 1990.
- [8] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. 26, Amer. Math. Soc., Providence, R.I., 1940.
- [9] J. Lopez and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.
- [10] S. Mandelbrojt, Séries de Fourier et classes quasi-analytiques de fonctions, Gauthier-Villars, Paris, 1935. Zbl0013.11006
- [11] I. Miheev, On lacunary series, Math. USSR-Sb. 27 (1975), 481-502; translated from Mat. Sb. 98 (140) (1975), 538-563. Zbl0371.42006
- [12] I. Miheev, Trigonometric series with gaps, Anal. Math. 9 (1983), 43-55. Zbl0544.10062
- [13] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. Zbl0091.05802
- [14] A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge, 1959. Zbl0085.05601
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.