A Sard type theorem for Borel mappings

Piotr Hajłasz

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 2, page 217-221
  • ISSN: 0010-1354

Abstract

top
We find a condition for a Borel mapping f : m n which implies that the Hausdorff dimension of f - 1 ( y ) is less than or equal to m-n for almost all y n .

How to cite

top

Hajłasz, Piotr. "A Sard type theorem for Borel mappings." Colloquium Mathematicae 67.2 (1994): 217-221. <http://eudml.org/doc/210274>.

@article{Hajłasz1994,
abstract = {We find a condition for a Borel mapping $f:ℝ^m → ℝ^n$ which implies that the Hausdorff dimension of $f^\{-1\}(y)$ is less than or equal to m-n for almost all $y ∈ ℝ^n$.},
author = {Hajłasz, Piotr},
journal = {Colloquium Mathematicae},
keywords = {Hausdorff dimension; Sard type theorem; Borel mappings; Hausdorff measure},
language = {eng},
number = {2},
pages = {217-221},
title = {A Sard type theorem for Borel mappings},
url = {http://eudml.org/doc/210274},
volume = {67},
year = {1994},
}

TY - JOUR
AU - Hajłasz, Piotr
TI - A Sard type theorem for Borel mappings
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 2
SP - 217
EP - 221
AB - We find a condition for a Borel mapping $f:ℝ^m → ℝ^n$ which implies that the Hausdorff dimension of $f^{-1}(y)$ is less than or equal to m-n for almost all $y ∈ ℝ^n$.
LA - eng
KW - Hausdorff dimension; Sard type theorem; Borel mappings; Hausdorff measure
UR - http://eudml.org/doc/210274
ER -

References

top
  1. [1] B. Bojarski and P. Hajłasz, in preparation. 
  2. [2] Y. Burago and V. Zalgaller, Geometric Inequalities, Grundlehren Math. Wiss. 285, Springer, 1988. 
  3. [3] S. Eilenberg, On ϕ -measures, Ann. Soc. Polon. Math. 17 (1938), 252-253. 
  4. [4] S. Eilenberg and O. Harold, Continua of finite linear measure I, Amer. J. Math. 65 (1943), 137-146. Zbl0063.01227
  5. [5] H. Federer, Geometric Measure Theory, Springer, 1969. Zbl0176.00801
  6. [6] P. Hajłasz, A note on weak approximation of minors, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl0910.49025
  7. [7] P. Hajłasz, Sobolev mappings, co-area formula and related topics, preprint. Zbl0988.28002
  8. [8] T. Jech, Set Theory, Acad. Press, 1978. 
  9. [9] K. Kuratowski, Topology, Vol. 1, Acad. Press, 1966. 
  10. [10] N. Lusin, Sur les ensembles analytiques, Fund. Math. 10 (1927), 1-95. 
  11. [11] N. Lusin et W. Sierpiński, Sur quelques propriétés des ensembles (A), Bull. Acad. Cracovie 4-5A (1918), 35-48. 
  12. [12] P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 227-244. Zbl0348.28019
  13. [13] J. Milnor, Topology from the Differentiable Viewpoint, The Univ. Press of Virginia, 1965. Zbl0136.20402
  14. [14] A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883-890. Zbl0063.06720
  15. [15] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.