A Sard type theorem for Borel mappings
Colloquium Mathematicae (1994)
- Volume: 67, Issue: 2, page 217-221
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topHajłasz, Piotr. "A Sard type theorem for Borel mappings." Colloquium Mathematicae 67.2 (1994): 217-221. <http://eudml.org/doc/210274>.
@article{Hajłasz1994,
abstract = {We find a condition for a Borel mapping $f:ℝ^m → ℝ^n$ which implies that the Hausdorff dimension of $f^\{-1\}(y)$ is less than or equal to m-n for almost all $y ∈ ℝ^n$.},
author = {Hajłasz, Piotr},
journal = {Colloquium Mathematicae},
keywords = {Hausdorff dimension; Sard type theorem; Borel mappings; Hausdorff measure},
language = {eng},
number = {2},
pages = {217-221},
title = {A Sard type theorem for Borel mappings},
url = {http://eudml.org/doc/210274},
volume = {67},
year = {1994},
}
TY - JOUR
AU - Hajłasz, Piotr
TI - A Sard type theorem for Borel mappings
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 2
SP - 217
EP - 221
AB - We find a condition for a Borel mapping $f:ℝ^m → ℝ^n$ which implies that the Hausdorff dimension of $f^{-1}(y)$ is less than or equal to m-n for almost all $y ∈ ℝ^n$.
LA - eng
KW - Hausdorff dimension; Sard type theorem; Borel mappings; Hausdorff measure
UR - http://eudml.org/doc/210274
ER -
References
top- [1] B. Bojarski and P. Hajłasz, in preparation.
- [2] Y. Burago and V. Zalgaller, Geometric Inequalities, Grundlehren Math. Wiss. 285, Springer, 1988.
- [3] S. Eilenberg, On -measures, Ann. Soc. Polon. Math. 17 (1938), 252-253.
- [4] S. Eilenberg and O. Harold, Continua of finite linear measure I, Amer. J. Math. 65 (1943), 137-146. Zbl0063.01227
- [5] H. Federer, Geometric Measure Theory, Springer, 1969. Zbl0176.00801
- [6] P. Hajłasz, A note on weak approximation of minors, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl0910.49025
- [7] P. Hajłasz, Sobolev mappings, co-area formula and related topics, preprint. Zbl0988.28002
- [8] T. Jech, Set Theory, Acad. Press, 1978.
- [9] K. Kuratowski, Topology, Vol. 1, Acad. Press, 1966.
- [10] N. Lusin, Sur les ensembles analytiques, Fund. Math. 10 (1927), 1-95.
- [11] N. Lusin et W. Sierpiński, Sur quelques propriétés des ensembles (A), Bull. Acad. Cracovie 4-5A (1918), 35-48.
- [12] P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 227-244. Zbl0348.28019
- [13] J. Milnor, Topology from the Differentiable Viewpoint, The Univ. Press of Virginia, 1965. Zbl0136.20402
- [14] A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883-890. Zbl0063.06720
- [15] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.