### A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections

P. Holický, Miroslav Zelený (2000)

Fundamenta Mathematicae

Similarity:

Let f be a Borel measurable mapping of a Luzin (i.e. absolute Borel metric) space L onto a metric space M such that f(F) is a Borel subset of M if F is closed in L. We show that then ${f}^{-1}\left(y\right)$ is a ${K}_{\sigma}$ set for all except countably many y ∈ M, that M is also Luzin, and that the Borel classes of the sets f(F), F closed in L, are bounded by a fixed countable ordinal. This gives a converse of the classical theorem of Arsenin and Kunugui. As a particular case we get Taĭmanov’s theorem saying that the...