Geodesic spheres and isometric flows

J. González-Dávila; L. Vanhecke

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 2, page 223-240
  • ISSN: 0010-1354

How to cite

top

González-Dávila, J., and Vanhecke, L.. "Geodesic spheres and isometric flows." Colloquium Mathematicae 67.2 (1994): 223-240. <http://eudml.org/doc/210275>.

@article{González1994,
author = {González-Dávila, J., Vanhecke, L.},
journal = {Colloquium Mathematicae},
keywords = {geometry of geodesic spheres; locally Killing-transversally symmetry space; isometric flow},
language = {eng},
number = {2},
pages = {223-240},
title = {Geodesic spheres and isometric flows},
url = {http://eudml.org/doc/210275},
volume = {67},
year = {1994},
}

TY - JOUR
AU - González-Dávila, J.
AU - Vanhecke, L.
TI - Geodesic spheres and isometric flows
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 2
SP - 223
EP - 240
LA - eng
KW - geometry of geodesic spheres; locally Killing-transversally symmetry space; isometric flow
UR - http://eudml.org/doc/210275
ER -

References

top
  1. [1] A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer, Berlin, 1987. 
  2. [2] P. Bueken, Reflections and rotations in contact geometry, doctoral dissertation, Catholic University Leuven, 1992. 
  3. [3] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28-67. 
  4. [4] M. Djorić and L. Vanhecke, Geometry of geodesic spheres on Sasakian manifolds, Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), 329-357. Zbl0782.53050
  5. [5] M. C. González-Dávila, Espacios transversalmente simétricos de tipo Killing, doctoral dissertation, Universidad de La Laguna, 1992. 
  6. [6] J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Reflections and isometric flows, Kyungpook Math. J., to appear. Zbl0839.53017
  7. [7] A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198. Zbl0428.53017
  8. [8] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. 
  9. [9] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957). Zbl0178.26502
  10. [10] B. L. Reinhart, Differential Geometry of Foliations, Ergeb. Math. Grenzgeb. 99, Springer, Berlin, 1983. Zbl0506.53018
  11. [11] T. Takahashi, Sasakian φ-symmetric spaces, Tôhoku Math. J. 29 (1977), 91-113. Zbl0343.53030
  12. [12] Ph. Tondeur, Foliations on Riemannian Manifolds, Universitext, Springer, Berlin, 1988. 
  13. [13] Ph. Tondeur and L. Vanhecke, Transversally symmetric Riemannian foliations, Tôhoku Math. J. 42 (1990), 307-317. Zbl0718.53022
  14. [14] Ph. Tondeur and L. Vanhecke, Jacobi fields, Riccati equation and Riemannian foliations, to appear. 
  15. [15] L. Vanhecke, Geometry in normal and tubular neighborhoods, in: Proc. Workshop on Differential Geometry and Topology, Cala Gonone (Sardinia) 1988, Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al vol. 58 (1988), 73-176. 

NotesEmbed ?

top

You must be logged in to post comments.