Geodesic spheres and isometric flows

J. González-Dávila; L. Vanhecke

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 2, page 223-240
  • ISSN: 0010-1354

How to cite

top

González-Dávila, J., and Vanhecke, L.. "Geodesic spheres and isometric flows." Colloquium Mathematicae 67.2 (1994): 223-240. <http://eudml.org/doc/210275>.

@article{González1994,
author = {González-Dávila, J., Vanhecke, L.},
journal = {Colloquium Mathematicae},
keywords = {geometry of geodesic spheres; locally Killing-transversally symmetry space; isometric flow},
language = {eng},
number = {2},
pages = {223-240},
title = {Geodesic spheres and isometric flows},
url = {http://eudml.org/doc/210275},
volume = {67},
year = {1994},
}

TY - JOUR
AU - González-Dávila, J.
AU - Vanhecke, L.
TI - Geodesic spheres and isometric flows
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 2
SP - 223
EP - 240
LA - eng
KW - geometry of geodesic spheres; locally Killing-transversally symmetry space; isometric flow
UR - http://eudml.org/doc/210275
ER -

References

top
  1. [1] A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer, Berlin, 1987. 
  2. [2] P. Bueken, Reflections and rotations in contact geometry, doctoral dissertation, Catholic University Leuven, 1992. 
  3. [3] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28-67. 
  4. [4] M. Djorić and L. Vanhecke, Geometry of geodesic spheres on Sasakian manifolds, Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), 329-357. Zbl0782.53050
  5. [5] M. C. González-Dávila, Espacios transversalmente simétricos de tipo Killing, doctoral dissertation, Universidad de La Laguna, 1992. 
  6. [6] J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Reflections and isometric flows, Kyungpook Math. J., to appear. Zbl0839.53017
  7. [7] A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198. Zbl0428.53017
  8. [8] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. 
  9. [9] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957). Zbl0178.26502
  10. [10] B. L. Reinhart, Differential Geometry of Foliations, Ergeb. Math. Grenzgeb. 99, Springer, Berlin, 1983. Zbl0506.53018
  11. [11] T. Takahashi, Sasakian φ-symmetric spaces, Tôhoku Math. J. 29 (1977), 91-113. Zbl0343.53030
  12. [12] Ph. Tondeur, Foliations on Riemannian Manifolds, Universitext, Springer, Berlin, 1988. 
  13. [13] Ph. Tondeur and L. Vanhecke, Transversally symmetric Riemannian foliations, Tôhoku Math. J. 42 (1990), 307-317. Zbl0718.53022
  14. [14] Ph. Tondeur and L. Vanhecke, Jacobi fields, Riccati equation and Riemannian foliations, to appear. 
  15. [15] L. Vanhecke, Geometry in normal and tubular neighborhoods, in: Proc. Workshop on Differential Geometry and Topology, Cala Gonone (Sardinia) 1988, Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al vol. 58 (1988), 73-176. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.