Invariants and flow geometry

J. González-Dávila; L. Vanhecke

Colloquium Mathematicae (1999)

  • Volume: 81, Issue: 1, page 33-50
  • ISSN: 0010-1354

Abstract

top
We continue the study of Riemannian manifolds (M,g) equipped with an isometric flow ξ generated by a unit Killing vector field ξ. We derive some new results for normal and contact flows and use invariants with respect to the group of ξ-preserving isometries to charaterize special (M,g, ξ ), in particular Einstein, η-Einstein, η-parallel and locally Killing-transversally symmetric spaces. Furthermore, we introduce curvature homogeneous flows and flow model spaces and derive an algebraic characterization of Killing-transversally symmetric spaces by using the curvature tensor of special flow model spaces. All these results extend the corresponding theory in Sasakian geometry to flow geometry.

How to cite

top

González-Dávila, J., and Vanhecke, L.. "Invariants and flow geometry." Colloquium Mathematicae 81.1 (1999): 33-50. <http://eudml.org/doc/210728>.

@article{González1999,
abstract = {We continue the study of Riemannian manifolds (M,g) equipped with an isometric flow $ℱ_ξ$ generated by a unit Killing vector field ξ. We derive some new results for normal and contact flows and use invariants with respect to the group of ξ-preserving isometries to charaterize special (M,g,$ℱ_ξ$), in particular Einstein, η-Einstein, η-parallel and locally Killing-transversally symmetric spaces. Furthermore, we introduce curvature homogeneous flows and flow model spaces and derive an algebraic characterization of Killing-transversally symmetric spaces by using the curvature tensor of special flow model spaces. All these results extend the corresponding theory in Sasakian geometry to flow geometry.},
author = {González-Dávila, J., Vanhecke, L.},
journal = {Colloquium Mathematicae},
keywords = {flow model spaces; normal, contact and curvature homogeneous flows; invariants and characterizations of special Riemannian manifolds; flows generated by a unit Killing vector field; curvature homogeneous flow; invariants; special Riemannian manifolds; Sasakian space; flow geometry},
language = {eng},
number = {1},
pages = {33-50},
title = {Invariants and flow geometry},
url = {http://eudml.org/doc/210728},
volume = {81},
year = {1999},
}

TY - JOUR
AU - González-Dávila, J.
AU - Vanhecke, L.
TI - Invariants and flow geometry
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 1
SP - 33
EP - 50
AB - We continue the study of Riemannian manifolds (M,g) equipped with an isometric flow $ℱ_ξ$ generated by a unit Killing vector field ξ. We derive some new results for normal and contact flows and use invariants with respect to the group of ξ-preserving isometries to charaterize special (M,g,$ℱ_ξ$), in particular Einstein, η-Einstein, η-parallel and locally Killing-transversally symmetric spaces. Furthermore, we introduce curvature homogeneous flows and flow model spaces and derive an algebraic characterization of Killing-transversally symmetric spaces by using the curvature tensor of special flow model spaces. All these results extend the corresponding theory in Sasakian geometry to flow geometry.
LA - eng
KW - flow model spaces; normal, contact and curvature homogeneous flows; invariants and characterizations of special Riemannian manifolds; flows generated by a unit Killing vector field; curvature homogeneous flow; invariants; special Riemannian manifolds; Sasakian space; flow geometry
UR - http://eudml.org/doc/210728
ER -

References

top
  1. [1] A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer, Berlin, 1987. 
  2. [2] B D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976. Zbl0319.53026
  3. [3] D. E. Blair and L. Vanhecke, Symmetries and φ-symmetric spaces, Tôhoku Math. J. 39 (1987), 373-383. Zbl0632.53039
  4. [4] E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian Manifolds of Conullity Two, World Scientific, Singapore, 1996. Zbl0904.53006
  5. [5] P. Bueken, Reflections and rotations in contact geometry, doctoral dissertation, Katholieke Universiteit Leuven, 1992. 
  6. [6] P. Bueken and L. Vanhecke, Algebraic characterizations by means of the curvature in contact geometry, in: Proc. III Internat. Sympos. Diff. Geom., Pe níscola, Lecture Notes in Math. 1410, Springer, Berlin, 1988, 77-86. Zbl0689.53021
  7. [7] P. Bueken and L. Vanhecke, Curvature characterizations in contact geometry, Riv. Mat. Univ. Parma 14 (1988), 303-313. Zbl0689.53021
  8. [8] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28-67. 
  9. [9] J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Reflections and isometric flows, Kyungpook Math. J. 35 (1995), 113-144. Zbl0839.53017
  10. [10] J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Classification of Killing-transversally symmetric spaces, Tsukuba J. Math. 20 (1996), 321-347. Zbl0890.53037
  11. [11] J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Normal flow space forms and their classification, Publ. Math. Debrecen 48 (1996), 151-173. Zbl0859.53016
  12. [12] J. C. González-Dávila and L. Vanhecke, Geodesic spheres and isometric flows, Colloq. Math. 67 (1994), 223-240. Zbl0827.53040
  13. [13] J. C. González-Dávila and L. Vanhecke, D'Atri spaces and C-spaces in flow geometry, Indian J. Pure Appl. Math. 29 (1998), 487-499. Zbl0912.53023
  14. [14] A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198. Zbl0428.53017
  15. [15] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1-27. Zbl0472.53043
  16. [16] O. Kowalski, F. Prüfer and L. Vanhecke, D'Atri spaces, in: Topics in Geometry: In Memory of Joseph D'Atri, S. Gindikin (ed.), Progr. Nonlinear Differential Equations, 20, Birkhäuser, Boston, 1996, 241-284. Zbl0862.53039
  17. [17] O B. O'Neill, The fundamental equation of a submersion, Michigan Math. J. 13 (1966), 459-469. 
  18. [18] Y. Shibuya, The spectrum of Sasakian manifolds, Kodai Math. J. 3 (1980), 197-211. Zbl0436.53048
  19. [19] Y. Shibuya, Some isospectral problems, ibid. 5 (1982), 1-12. Zbl0488.53034
  20. [20] I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. Zbl0171.42503
  21. [21] T T. Takahashi, Sasakian φ-symmetric spaces, Tôhoku Math. J. 29 (1977), 91-113. Zbl0343.53030
  22. [22] Ph. Tondeur, Foliations on Riemannian Manifolds, Universitext, Springer, Berlin, 1988. 
  23. [23] Ph. Tondeur and L. Vanhecke, Transversally symmetric Riemannian foliations, Tôhoku Math. J. 42 (1990), 307-317. Zbl0718.53022
  24. [24] F. Tricerri and L. Vanhecke, Decomposition of a space of curvature tensors on a quaternionic Kähler manifold and spectrum theory, Simon Stevin 53 (1979), 163-173. Zbl0409.53034
  25. [25] F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. Zbl0484.53014
  26. [26] F. Tricerri and L. Vanhecke, Variétés riemanniennes dont le tenseur de courbure est celui d'un espace symétrique irréductible, C. R. Acad. Sci. Paris Sér. I 302 (1986), 233-235. Zbl0585.53043
  27. [27] L. Vanhecke, Scalar curvature invariants and local homogeneity, Rend. Circ. Mat. Palermo (2) Suppl. 49 (1997), 275-287. Zbl0894.53046
  28. [28] Y. Watanabe, Geodesic symmetries in Sasakian locally φ-symmetric spaces, Kodai Math. J. 3 (1980), 48-55. 
  29. [29] K. Yano and S. Ishihara, Fibred spaces with invariant Riemannian metric, Kōdai Math. Sem. Rep. 19 (1967), 317-360. Zbl0156.42501
  30. [30] K. Yano and M. Kon, Structures on Manifolds, Ser. Pure Math. 3, World Scientific, Singapore, 1984. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.