# Hardy spaces associated with some Schrödinger operators

Jacek Dziubański; Jacek Zienkiewicz

Studia Mathematica (1997)

- Volume: 126, Issue: 2, page 149-160
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topDziubański, Jacek, and Zienkiewicz, Jacek. "Hardy spaces associated with some Schrödinger operators." Studia Mathematica 126.2 (1997): 149-160. <http://eudml.org/doc/216448>.

@article{Dziubański1997,

abstract = {For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy $H_A^1$ space associated with A. An atomic characterization of $H_A^1$ is shown.},

author = {Dziubański, Jacek, Zienkiewicz, Jacek},

journal = {Studia Mathematica},

keywords = {Hardy spaces; Schrödinger operator; atomic decomposition},

language = {eng},

number = {2},

pages = {149-160},

title = {Hardy spaces associated with some Schrödinger operators},

url = {http://eudml.org/doc/216448},

volume = {126},

year = {1997},

}

TY - JOUR

AU - Dziubański, Jacek

AU - Zienkiewicz, Jacek

TI - Hardy spaces associated with some Schrödinger operators

JO - Studia Mathematica

PY - 1997

VL - 126

IS - 2

SP - 149

EP - 160

AB - For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy $H_A^1$ space associated with A. An atomic characterization of $H_A^1$ is shown.

LA - eng

KW - Hardy spaces; Schrödinger operator; atomic decomposition

UR - http://eudml.org/doc/216448

ER -

## References

top- [D] J. Dziubański, A note on Schrödinger operators with polynomial potentials, preprint. Zbl0919.43005
- [DHJ] J. Dziubański, A. Hulanicki, and J. W. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, Colloq. Math. 68 (1995), 7-16. Zbl0837.43012
- [Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. Zbl0526.35080
- [FeS] C. Fefferman and E. Stein, ${H}^{p}$ spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
- [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982. Zbl0508.42025
- [G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on nongraded homogeneous groups, Invent. Math. 83 (1986), 557-582. Zbl0595.43006
- [Go] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42.
- [He] W. Hebisch, On operators satisfying Rockland condition, preprint, Univ. of Wrocław.
- [HN] B. Helffer et J. Nourrigat, Une inégalité ${L}^{2}$, preprint.
- [S1] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, 1970. Zbl0193.10502
- [S2] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, 1993.
- [Z] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton Univ., 1993.