Restitution des coefficients d'ondelettes des signaux filtrés

E. Maghras

Colloquium Mathematicae (1995)

  • Volume: 68, Issue: 2, page 265-283
  • ISSN: 0010-1354

How to cite

top

Maghras, E.. "Restitution des coefficients d'ondelettes des signaux filtrés." Colloquium Mathematicae 68.2 (1995): 265-283. <http://eudml.org/doc/210311>.

@article{Maghras1995,
author = {Maghras, E.},
journal = {Colloquium Mathematicae},
keywords = {signal of finite energy; perfect reconstruction; Fourier transforms; deconvolution; bandlimited filters of spline type},
language = {fre},
number = {2},
pages = {265-283},
title = {Restitution des coefficients d'ondelettes des signaux filtrés},
url = {http://eudml.org/doc/210311},
volume = {68},
year = {1995},
}

TY - JOUR
AU - Maghras, E.
TI - Restitution des coefficients d'ondelettes des signaux filtrés
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 2
SP - 265
EP - 283
LA - fre
KW - signal of finite energy; perfect reconstruction; Fourier transforms; deconvolution; bandlimited filters of spline type
UR - http://eudml.org/doc/210311
ER -

References

top
  1. [1] C. A. Berenstein, R. Gay and A. Yger, The three squares theorem. A local version, in: Lecture Notes in Pure and Appl. Math. 122, Dekker, 1990, 35-50. 
  2. [2] C. A. Berenstein, B. A. Taylor et A. Yger, Sur quelques formules explicites de déconvolution, J. Optics 14 (1983), 75-82. 
  3. [3] C. A. Berenstein et A. Yger, Le problème de la déconvolution, J. Funct. Anal. 54 (1983), 113-160. 
  4. [4] S. D. Casey and D. F. Walnut, Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms, SIAM Rev. 36 (1994), 537-577. Zbl0814.45001
  5. [5] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. Zbl0644.42026
  6. [6] S. Jaffard et Y. Meyer, Base d’ondelettes dans des ouverts de n , J. Math. Pures Appl. 68 (1989), 95-108. Zbl0704.46009
  7. [7] S. Lang, Introduction to Diophantine Approximations, Addison-Wesley, Reading, Mass., 1966. Zbl0144.04005
  8. [8] S. G. Mallat, A theory of multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intelligence 11 (7) (1989), 674-693. Zbl0709.94650
  9. [9] Y. Meyer, Ondelettes et opérateurs I, Hermann, Paris, 1990. Zbl0694.41037
  10. [10] A. Yger et C. A. Berenstein, Traitement du signal et algorithmes explicites de déconvolution, Séminaire Bony-Sjöstrand-Meyer, École Polytechnique, 1984-1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.