Restitution des coefficients d'ondelettes des signaux filtrés
Colloquium Mathematicae (1995)
- Volume: 68, Issue: 2, page 265-283
- ISSN: 0010-1354
Access Full Article
topHow to cite
topMaghras, E.. "Restitution des coefficients d'ondelettes des signaux filtrés." Colloquium Mathematicae 68.2 (1995): 265-283. <http://eudml.org/doc/210311>.
@article{Maghras1995,
author = {Maghras, E.},
journal = {Colloquium Mathematicae},
keywords = {signal of finite energy; perfect reconstruction; Fourier transforms; deconvolution; bandlimited filters of spline type},
language = {fre},
number = {2},
pages = {265-283},
title = {Restitution des coefficients d'ondelettes des signaux filtrés},
url = {http://eudml.org/doc/210311},
volume = {68},
year = {1995},
}
TY - JOUR
AU - Maghras, E.
TI - Restitution des coefficients d'ondelettes des signaux filtrés
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 2
SP - 265
EP - 283
LA - fre
KW - signal of finite energy; perfect reconstruction; Fourier transforms; deconvolution; bandlimited filters of spline type
UR - http://eudml.org/doc/210311
ER -
References
top- [1] C. A. Berenstein, R. Gay and A. Yger, The three squares theorem. A local version, in: Lecture Notes in Pure and Appl. Math. 122, Dekker, 1990, 35-50.
- [2] C. A. Berenstein, B. A. Taylor et A. Yger, Sur quelques formules explicites de déconvolution, J. Optics 14 (1983), 75-82.
- [3] C. A. Berenstein et A. Yger, Le problème de la déconvolution, J. Funct. Anal. 54 (1983), 113-160.
- [4] S. D. Casey and D. F. Walnut, Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms, SIAM Rev. 36 (1994), 537-577. Zbl0814.45001
- [5] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. Zbl0644.42026
- [6] S. Jaffard et Y. Meyer, Base d’ondelettes dans des ouverts de , J. Math. Pures Appl. 68 (1989), 95-108. Zbl0704.46009
- [7] S. Lang, Introduction to Diophantine Approximations, Addison-Wesley, Reading, Mass., 1966. Zbl0144.04005
- [8] S. G. Mallat, A theory of multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intelligence 11 (7) (1989), 674-693. Zbl0709.94650
- [9] Y. Meyer, Ondelettes et opérateurs I, Hermann, Paris, 1990. Zbl0694.41037
- [10] A. Yger et C. A. Berenstein, Traitement du signal et algorithmes explicites de déconvolution, Séminaire Bony-Sjöstrand-Meyer, École Polytechnique, 1984-1985.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.