Multiplier theorem on generalized Heisenberg groups II
Waldemar Hebisch; Jacek Zienkiewicz
Colloquium Mathematicae (1996)
- Volume: 69, Issue: 1, page 29-36
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topHebisch, Waldemar, and Zienkiewicz, Jacek. "Multiplier theorem on generalized Heisenberg groups II." Colloquium Mathematicae 69.1 (1996): 29-36. <http://eudml.org/doc/210322>.
@article{Hebisch1996,
abstract = {We prove that on a product of generalized Heisenberg groups, a Hörmander type multiplier theorem for Rockland operators is true with the critical index n/2 + ϵ, ϵ>0, where n is the euclidean (topological) dimension of the group.},
author = {Hebisch, Waldemar, Zienkiewicz, Jacek},
journal = {Colloquium Mathematicae},
keywords = {generalized Heisenberg groups; Hörmander type multiplier theorem; Rockland operators},
language = {eng},
number = {1},
pages = {29-36},
title = {Multiplier theorem on generalized Heisenberg groups II},
url = {http://eudml.org/doc/210322},
volume = {69},
year = {1996},
}
TY - JOUR
AU - Hebisch, Waldemar
AU - Zienkiewicz, Jacek
TI - Multiplier theorem on generalized Heisenberg groups II
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 1
SP - 29
EP - 36
AB - We prove that on a product of generalized Heisenberg groups, a Hörmander type multiplier theorem for Rockland operators is true with the critical index n/2 + ϵ, ϵ>0, where n is the euclidean (topological) dimension of the group.
LA - eng
KW - generalized Heisenberg groups; Hörmander type multiplier theorem; Rockland operators
UR - http://eudml.org/doc/210322
ER -
References
top- [1] M. Christ, bound for spectral multiplier on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73-81.
- [2] J. Cygan, Heat kernels for class 2 nilpotent groups, Studia Math. 64 (1979), 227-238. Zbl0336.35029
- [3] J. Dziubański, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83. Zbl0711.43003
- [4] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. Zbl0508.42025
- [5] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95-153.
- [6] P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371-395. Zbl0678.43002
- [7] W. Hebisch, A multiplier theorem for Schrödinger operators, Colloq. Math. 60/61 (1990), 659-664. Zbl0779.35025
- [8] W. Hebisch, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275. Zbl0716.35053
- [9] W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Colloq. Math. 65 (1993), 231-239. Zbl0841.43009
- [10] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236. Zbl0723.22007
- [11] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 3 (1978), 889-958. Zbl0423.35040
- [12] A. Hulanicki, Subalgebra of associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. Zbl0316.43005
- [13] A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), 165-179. Zbl0336.22007
- [14] A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, ibid. 80 (1984), 235-244.
- [15] G. Mauceri and S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 3-4 (6) (1990), 141-154. Zbl0763.43005
- [16] D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl., to appear. Zbl0838.43011
- [17] J. Randall, The heat kernel for generalized Heisenberg groups, to appear. Zbl0897.43007
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.