A multifractal analysis of an interesting class of measures

Antonis Bisbas

Colloquium Mathematicae (1996)

  • Volume: 69, Issue: 1, page 37-42
  • ISSN: 0010-1354

How to cite

top

Bisbas, Antonis. "A multifractal analysis of an interesting class of measures." Colloquium Mathematicae 69.1 (1996): 37-42. <http://eudml.org/doc/210323>.

@article{Bisbas1996,
author = {Bisbas, Antonis},
journal = {Colloquium Mathematicae},
keywords = {Hausdorff dimension; multifractal; Rademacher Riesz products; coin tossing measure; Rademacher-Riesz product},
language = {eng},
number = {1},
pages = {37-42},
title = {A multifractal analysis of an interesting class of measures},
url = {http://eudml.org/doc/210323},
volume = {69},
year = {1996},
}

TY - JOUR
AU - Bisbas, Antonis
TI - A multifractal analysis of an interesting class of measures
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 1
SP - 37
EP - 42
LA - eng
KW - Hausdorff dimension; multifractal; Rademacher Riesz products; coin tossing measure; Rademacher-Riesz product
UR - http://eudml.org/doc/210323
ER -

References

top
  1. [1] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. Zbl0141.16702
  2. [2] A. Bisbas, A note on the distribution of digits in dyadic expansions, C. R. Acad. Sci. Paris 318 (1994), 105-109. Zbl0932.11051
  3. [3] A. Bisbas, On the distribution of digits in triadic expansions, preprint. 
  4. [4] A. Bisbas and C. Karanikas, On the Hausdorff dimension of Rademacher Riesz products, Monatsh. Math. 110 (1990), 15-21. 
  5. [5] A. Bisbas and C. Karanikas, On the continuity of measures, Appl. Anal. 48 (1993), 23-35. 
  6. [6] J. R. Blum and B. Epstein, On the Fourier transforms of an interesting class of measures, Israel J. Math. 10 (1971), 302-305. Zbl0228.60005
  7. [7] H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number theory, Proc. London Math. Soc. (2) 54 (1952), 42-93. Zbl0045.16603
  8. [8] A. H. Fan, Quelques propriétés des produits de Riesz, Bull. Sci. Math. 117 (1993), 421-439. 
  9. [9] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, Berlin, 1979. Zbl0439.43001
  10. [10] J.-P. Kahane, Fractals and random measures, Bull. Sci. Math. 117 (1993), 153-159. Zbl0776.28003
  11. [11] G. Marsaglia, Random variables with independent binary digits, Ann. Math. Statist. 42 (1971), 1922-1929. Zbl0239.60015
  12. [12] R. Salem, On singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427-439. Zbl0060.13709

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.