A multifractal analysis of an interesting class of measures
Colloquium Mathematicae (1996)
- Volume: 69, Issue: 1, page 37-42
- ISSN: 0010-1354
Access Full Article
topHow to cite
topBisbas, Antonis. "A multifractal analysis of an interesting class of measures." Colloquium Mathematicae 69.1 (1996): 37-42. <http://eudml.org/doc/210323>.
@article{Bisbas1996,
author = {Bisbas, Antonis},
journal = {Colloquium Mathematicae},
keywords = {Hausdorff dimension; multifractal; Rademacher Riesz products; coin tossing measure; Rademacher-Riesz product},
language = {eng},
number = {1},
pages = {37-42},
title = {A multifractal analysis of an interesting class of measures},
url = {http://eudml.org/doc/210323},
volume = {69},
year = {1996},
}
TY - JOUR
AU - Bisbas, Antonis
TI - A multifractal analysis of an interesting class of measures
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 1
SP - 37
EP - 42
LA - eng
KW - Hausdorff dimension; multifractal; Rademacher Riesz products; coin tossing measure; Rademacher-Riesz product
UR - http://eudml.org/doc/210323
ER -
References
top- [1] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. Zbl0141.16702
- [2] A. Bisbas, A note on the distribution of digits in dyadic expansions, C. R. Acad. Sci. Paris 318 (1994), 105-109. Zbl0932.11051
- [3] A. Bisbas, On the distribution of digits in triadic expansions, preprint.
- [4] A. Bisbas and C. Karanikas, On the Hausdorff dimension of Rademacher Riesz products, Monatsh. Math. 110 (1990), 15-21.
- [5] A. Bisbas and C. Karanikas, On the continuity of measures, Appl. Anal. 48 (1993), 23-35.
- [6] J. R. Blum and B. Epstein, On the Fourier transforms of an interesting class of measures, Israel J. Math. 10 (1971), 302-305. Zbl0228.60005
- [7] H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number theory, Proc. London Math. Soc. (2) 54 (1952), 42-93. Zbl0045.16603
- [8] A. H. Fan, Quelques propriétés des produits de Riesz, Bull. Sci. Math. 117 (1993), 421-439.
- [9] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, Berlin, 1979. Zbl0439.43001
- [10] J.-P. Kahane, Fractals and random measures, Bull. Sci. Math. 117 (1993), 153-159. Zbl0776.28003
- [11] G. Marsaglia, Random variables with independent binary digits, Ann. Math. Statist. 42 (1971), 1922-1929. Zbl0239.60015
- [12] R. Salem, On singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427-439. Zbl0060.13709
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.