Estimations de la dimension inférieure et de la dimension supérieure des mesures

Yanick Heurteaux

Annales de l'I.H.P. Probabilités et statistiques (1998)

  • Volume: 34, Issue: 3, page 309-338
  • ISSN: 0246-0203

How to cite

top

Heurteaux, Yanick. "Estimations de la dimension inférieure et de la dimension supérieure des mesures." Annales de l'I.H.P. Probabilités et statistiques 34.3 (1998): 309-338. <http://eudml.org/doc/77605>.

@article{Heurteaux1998,
author = {Heurteaux, Yanick},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Hausdorff measure; packing measure; Hausdorff dimension; lower and upper dimension; Cantor sets; multifractal analysis; Tricot dimension; Rényi dimensions; quasi-Bernoulli measures},
language = {fre},
number = {3},
pages = {309-338},
publisher = {Gauthier-Villars},
title = {Estimations de la dimension inférieure et de la dimension supérieure des mesures},
url = {http://eudml.org/doc/77605},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Heurteaux, Yanick
TI - Estimations de la dimension inférieure et de la dimension supérieure des mesures
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1998
PB - Gauthier-Villars
VL - 34
IS - 3
SP - 309
EP - 338
LA - fre
KW - Hausdorff measure; packing measure; Hausdorff dimension; lower and upper dimension; Cantor sets; multifractal analysis; Tricot dimension; Rényi dimensions; quasi-Bernoulli measures
UR - http://eudml.org/doc/77605
ER -

References

top
  1. [1] A. Batakis, Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn., vol. 21, 1996, p. 255-270. Zbl0849.31005MR1404086
  2. [2] A. Beurling et L. Ahlfors, The boundary correspondance under quasiconformal mappings, Acta Math., vol. 96, 1956, p. 125-142. Zbl0072.29602MR86869
  3. [3] A.S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Annalen, vol. 110, 1934-35, p. 321-330. Zbl0009.39503JFM60.0949.01
  4. [4] P. Billingsley, Ergodic theory and information, J. Wiley & Sons, Inc., New York, 1965. Zbl0141.16702
  5. [5] A. Bisbas, A multifractal analysis of an interesting class of measures, Colloq. Math., vol. 69, 1995, p. 37-42. Zbl0849.28003MR1341679
  6. [6] A. Bisbas et C. Karanikas, On the Hausdorff dimension of Rademacher Riesz products, Monatsh. Math., vol. 110, 1990, p. 15-21. Zbl0726.42016MR1072724
  7. [7] J. Bourgain, On the Hausdorff dimension of harmonic measure in higher dimension, Invent. Math., vol. 87, 1987, p. 477-483. Zbl0616.31004MR874032
  8. [8] G. Brown, G. Michon et J. Peyrière, On the Multifractal Analysis ofMeasures, J. Stat. Phys., vol. 66, 1992, p. 775-790. Zbl0892.28006MR1151978
  9. [9] L. Caffarelli, E. Fabes et C. Kenig, Completely singular elliptic-harmonic measures, Ind. U. Math. J., vol. 30, 1981, p. 917-924. Zbl0482.35020MR632860
  10. [10] L. Carleson, On the support of harmonic for sets of cantor type, Ann. Acad. Sci. Fenn., vol. 10, 1985, p. 113-123. Zbl0593.31004MR802473
  11. [ 11 ] H.G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford, Ser. (2), vol. 20, 1949, p. 31-46. Zbl0031.20801MR31026
  12. [12] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, J. Wiley & Sons Ltd., New York, 1990. Zbl0689.28003
  13. [13] A.H. Fan, Décompositions de mesures et recouvrements aléatoires, Publication d'Orsay 89-03, 1989. Zbl0685.60015
  14. [14] A.H. Fan, Sur la dimension des mesures, Studia Math., vol. 111, 1994, p. 1-17. Zbl0805.28002
  15. [15] R. Fefferman, C. Kenig et J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. (2), vol. 134, 1991, p. 65-124. Zbl0770.35014MR1114608
  16. [16] W.K. Hayman et A. Hinkkanen, Distorsion estimates for quasisymmetric functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, vol. 36-37, 1982-83, p. 51-67. Zbl0577.30017MR808433
  17. [17] Y. Heurteaux, Sur la comparaison des mesures avec les mesures deHausdorff, C.R. Acad. Sci., Paris, t. 321, série 1, 1995, p. 61-65. Zbl0843.28001MR1340083
  18. [18] R. Kaufman et J.M. Wu, Two problems on doubling measures, Rev. Mat. Iberoamericana, vol. 11, 1995, p. 527-545. Zbl0862.28005MR1363204
  19. [19] N. Makarov et A. Volberg, On the harmonic measure of discontinous fractals, preprint LOMI E-6-86, Lenningrad, 1986. 
  20. [20] A. Manning, The dimension of the maximal measure for a polynomial map, Ann. of Maths. (2), vol. 119, 1984, p. 425-430. Zbl0551.30021MR740898
  21. [21] G. Michon, Mesures de Gibbs sur les cantor réguliers, Ann. Inst. H. Poincaré, Phys. Théor., vol. 58, 1983, p. 267-285. Zbl0784.60097MR1222943
  22. [22] S.M. Ngai, A dimension result arising from the Lq spectrum of a measure, Proc. Amer. Math. Soc., vol. 125, 1997, p. 2943-2951. Zbl0886.28006MR1402878
  23. [23] J. Peyrière, An introduction to fractal measures and dimensions, Lectures at Xiangfan, 1995. 
  24. [24] C. Tricot Jr, Sur la classification des ensembles boréliens de mesure de Lebesgue nulle, Thèse, Faculté des Sciences de l'Université de Genève, 1980. 
  25. [25] C. TricotJr, Two definitions of fractional dimension, Math. Proc. Camb. Phil. Soc., vol. 91, 1982, p. 57-74. Zbl0483.28010MR633256
  26. [26] P. Tukia, Hausdorff dimension and quasisymmetric mappings, Math. Scand., vol. 65, 1989, p. 152-160. Zbl0677.30016MR1051832
  27. [27] L. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. & Dynam. Sys., vol. 2, 1982, p. 109-124. Zbl0523.58024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.