Krengel-Lin decomposition for noncompact groups

Wojciech Bartoszek; Ryszard Rębowski

Colloquium Mathematicae (1996)

  • Volume: 69, Issue: 1, page 87-94
  • ISSN: 0010-1354

How to cite

top

Bartoszek, Wojciech, and Rębowski, Ryszard. "Krengel-Lin decomposition for noncompact groups." Colloquium Mathematicae 69.1 (1996): 87-94. <http://eudml.org/doc/210330>.

@article{Bartoszek1996,
author = {Bartoszek, Wojciech, Rębowski, Ryszard},
journal = {Colloquium Mathematicae},
keywords = {Markov operator; ergodic theory; random walk; concentration function; concentrated measure; locally compact, -compact group; right Haar measure; convex convolution semigroup; Borel probability measures; SIN groups},
language = {eng},
number = {1},
pages = {87-94},
title = {Krengel-Lin decomposition for noncompact groups},
url = {http://eudml.org/doc/210330},
volume = {69},
year = {1996},
}

TY - JOUR
AU - Bartoszek, Wojciech
AU - Rębowski, Ryszard
TI - Krengel-Lin decomposition for noncompact groups
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 1
SP - 87
EP - 94
LA - eng
KW - Markov operator; ergodic theory; random walk; concentration function; concentrated measure; locally compact, -compact group; right Haar measure; convex convolution semigroup; Borel probability measures; SIN groups
UR - http://eudml.org/doc/210330
ER -

References

top
  1. [AB] M. A. Akcoglu and D. Boivin, Approximation of L p -contractions by isometries, Canad. Math. Bull. 32 (1989), 360-364. Zbl0698.47007
  2. [B1] W. Bartoszek, On the asymptotic behaviour of positive linear operators, Notices South African Math. Soc. 25 (1993), 48-78. 
  3. [B2] W. Bartoszek, On concentration functions on discrete groups, Ann. Probab. 22 (1994). 
  4. [B3] W. Bartoszek, On concentrated probabilities, Ann. Polon. Math. 61 (1995), 25-38. 
  5. [B4] W. Bartoszek, On convolution powers on semidirect products, Israel J. Math. (1995), to appear. Zbl0836.43002
  6. [C] I. Csiszár, On infinite products of random elements and infinite convolutions of probability distributions on locally compact groups, Z. Wahrsch. Verw. Gebiete 5 (1966), 279-295. Zbl0144.39504
  7. [DL1] Y. Derriennic et M. Lin, Sur le comportement asymptotique de puissances de convolution d'une probabilité, Ann. Inst. H. Poincaré 20 (1984), 127-132. Zbl0536.60014
  8. [DL2] Y. Derriennic et M. Lin, Convergence of iterates of averages of certain operator representations and convolution powers, J. Funct. Anal. 85 (1989), 86-102. Zbl0712.22008
  9. [E] P. Eisele, On shifted convolution powers of a probability measure, Math. Z. 211 (1992), 557-574. Zbl0760.60009
  10. [F] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold, 1969. 
  11. [HT] G. Hansel and J. P. Troallic, On a class of weakly periodic mappings, Semigroup Forum 41 (1990), 357-372. Zbl0701.43013
  12. [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, 1963. 
  13. [H] H. Heyer, Probability Measures on Locally Compact Groups, Springer, 1977. Zbl0376.60002
  14. [KL] U. Krengel and M. Lin, On the deterministic and asymptotic σ-algebras of a Markov operator, Canad. Math. Bull. 32 (1) (1989), 64-73. Zbl0638.60079
  15. [R] R. Rębowski, Convergence of iterates of averages of group representations, Rend. Circ. Mat. Palermo (2) 33 (1993), 453-461. Zbl0829.47010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.