Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves

Garth Gaudry; Tao Qian; Silei Wang

Colloquium Mathematicae (1996)

  • Volume: 70, Issue: 1, page 133-150
  • ISSN: 0010-1354

Abstract

top
The aim of this paper is to study singular integrals T generated by holomorphic kernels defined on a natural neighbourhood of the set z ζ - 1 : z , ζ , z ζ , where is a star-shaped Lipschitz curve, = e x p ( i z ) : z = x + i A ( x ) , A ' L [ - π , π ] , A ( - π ) = A ( π ) . Under suitable conditions on F and z, the operators are given by (1) T F ( z ) = p . v . ( z η - 1 ) F ( η ) ( d η / η ) . We identify a class of kernels of the stated type that give rise to bounded operators on L 2 ( , | d | ) . We establish also transference results relating the boundedness of kernels on closed Lipschitz curves to corresponding results on periodic, unbounded curves.

How to cite

top

Gaudry, Garth, Qian, Tao, and Wang, Silei. "Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves." Colloquium Mathematicae 70.1 (1996): 133-150. <http://eudml.org/doc/210391>.

@article{Gaudry1996,
abstract = {The aim of this paper is to study singular integrals T generated by holomorphic kernels defined on a natural neighbourhood of the set $\{zζ^\{-1\}: z, ζ ∈ , z ≠ ζ\}$, where is a star-shaped Lipschitz curve, $ =\{ exp(iz) : z = x+iA(x), A^\{\prime \} ∈ L^\{∞\}[-π,π], A(-π ) =A(π)\}$. Under suitable conditions on F and z, the operators are given by (1) $TF(z)= p.v. ∫_ (zη^\{-1\})F(η)(dη/η).$ We identify a class of kernels of the stated type that give rise to bounded operators on $L^\{2\} (,|d|)$. We establish also transference results relating the boundedness of kernels on closed Lipschitz curves to corresponding results on periodic, unbounded curves.},
author = {Gaudry, Garth, Qian, Tao, Wang, Silei},
journal = {Colloquium Mathematicae},
keywords = {singular integrals; holomorphic kernels; star-shaped Lipschitz curve; transference; boundedness},
language = {eng},
number = {1},
pages = {133-150},
title = {Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves},
url = {http://eudml.org/doc/210391},
volume = {70},
year = {1996},
}

TY - JOUR
AU - Gaudry, Garth
AU - Qian, Tao
AU - Wang, Silei
TI - Boundedness of singular integral operators with holomorphic kernels on star-shaped closed Lipschitz curves
JO - Colloquium Mathematicae
PY - 1996
VL - 70
IS - 1
SP - 133
EP - 150
AB - The aim of this paper is to study singular integrals T generated by holomorphic kernels defined on a natural neighbourhood of the set ${zζ^{-1}: z, ζ ∈ , z ≠ ζ}$, where is a star-shaped Lipschitz curve, $ ={ exp(iz) : z = x+iA(x), A^{\prime } ∈ L^{∞}[-π,π], A(-π ) =A(π)}$. Under suitable conditions on F and z, the operators are given by (1) $TF(z)= p.v. ∫_ (zη^{-1})F(η)(dη/η).$ We identify a class of kernels of the stated type that give rise to bounded operators on $L^{2} (,|d|)$. We establish also transference results relating the boundedness of kernels on closed Lipschitz curves to corresponding results on periodic, unbounded curves.
LA - eng
KW - singular integrals; holomorphic kernels; star-shaped Lipschitz curve; transference; boundedness
UR - http://eudml.org/doc/210391
ER -

References

top
  1. [D] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. 17 (1984), 157-189. Zbl0537.42016
  2. [DJS] G. David, J.-L. Journé et S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56. Zbl0604.42014
  3. [CGQ] M. G. Cowling, G. I. Gaudry and T. Qian, A note on martingales with respect to complex measures, in: Miniconf. on Operators in Analysis, Macquarie Univ., Sept. 1989, Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra, 1989, 10-27. 
  4. [CJS] R. R. Coifman, P. W. Jones and S. Semmes, Two elementary proofs of the L 2 boundedness of Cauchy integrals on Lipschitz curves, J. Amer. Math. Soc. 2 (1989), 553-564. Zbl0713.42010
  5. [CM1] R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón's theorem, and analysis on Lipschitz curves, in: Lecture Notes in Math. 779, Springer 1980, 104-122. 
  6. [CM2] R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). Zbl0483.35082
  7. [CMcM] R. Coifman, A. McIntosh et Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes, Ann. of Math. 116 (1982), 361-387. 
  8. [deL] K. de Leeuw, On L p multipliers, Ann. of Math. 81 (1965), 364-379. 
  9. [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1970. 
  10. [GLQ] A martingale proof of L 2 boundedness of Clifford-valued singular integrals, Ann. Mat. Pura Appl. 165 (1993), 369-394. Zbl0814.42009
  11. [JK] D. Jerison and C. Kenig, Hardy spaces, A , and singular integrals on chord-arc domains, Math. Scand. 50 (1982), 221-247. Zbl0509.30025
  12. [K] C. E. Kenig, Weighted H p spaces on Lipschitz domains, Amer. J. Math. 102 (1980), 129-163. 
  13. [LMcS] C. Li, A. McIntosh and S. Semmes, Convolution singular integral operators on Lipschitz surfaces, to appear. 
  14. [LMcQ] C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Rev. Mat. Iberoamericana, to appear. 
  15. [Mc] A. McIntosh, Operators which have an H -functional calculus, in: Miniconf. on Operator Theory and Partial Differential Equations, 1986, Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra, 14 Austral. Nat. Univ., 1986, 210-231. 
  16. [McQ1] A. McIntosh and T. Qian, Convolution singular integral operators on Lipschitz curves, in: Lecture Notes in Math. 1494, Springer, 1991, 142-162. Zbl0791.42012
  17. [McQ2] A. McIntosh and T. Qian, A note on singular integrals with holomorphic kernels, Approx. Theory Appl. 6 (1990), 40-54. 
  18. [McQ3] A. McIntosh and T. Qian, Fourier multipliers on Lipschitz curves, Trans. Amer. Math. Soc. 333 (1992), 157-176. Zbl0766.42005
  19. [Q] T. Qian, Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves, preprint. Zbl0924.42012
  20. [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. 
  21. [T] T. Tao, Convolution operators generated by right-monogenic and harmonic kernels, M.Sc. thesis, Flinders Univ. of South Australia, 1992; Paper of same title, submitted. 
  22. [Z] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1968. Zbl0157.38204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.