Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves

Tao Qian

Studia Mathematica (1997)

  • Volume: 123, Issue: 3, page 195-216
  • ISSN: 0039-3223

Abstract

top
The paper presents a theory of Fourier transforms of bounded holomorphic functions defined in sectors. The theory is then used to study singular integral operators on star-shaped Lipschitz curves, which extends the result of Coifman-McIntosh-Meyer on the L 2 -boundedness of the Cauchy integral operator on Lipschitz curves. The operator theory has a counterpart in Fourier multiplier theory, as well as a counterpart in functional calculus of the differential operator 1/i d/dz on the curves.

How to cite

top

Qian, Tao. "Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves." Studia Mathematica 123.3 (1997): 195-216. <http://eudml.org/doc/216389>.

@article{Qian1997,
abstract = {The paper presents a theory of Fourier transforms of bounded holomorphic functions defined in sectors. The theory is then used to study singular integral operators on star-shaped Lipschitz curves, which extends the result of Coifman-McIntosh-Meyer on the $L^2$-boundedness of the Cauchy integral operator on Lipschitz curves. The operator theory has a counterpart in Fourier multiplier theory, as well as a counterpart in functional calculus of the differential operator 1/i d/dz on the curves.},
author = {Qian, Tao},
journal = {Studia Mathematica},
keywords = {singular integrals; Fourier multipliers; Cauchy integral operator; Lipschitz curves},
language = {eng},
number = {3},
pages = {195-216},
title = {Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves},
url = {http://eudml.org/doc/216389},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Qian, Tao
TI - Singular integrals with holomorphic kernels and Fourier multipliers on star-shaped closed Lipschitz curves
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 3
SP - 195
EP - 216
AB - The paper presents a theory of Fourier transforms of bounded holomorphic functions defined in sectors. The theory is then used to study singular integral operators on star-shaped Lipschitz curves, which extends the result of Coifman-McIntosh-Meyer on the $L^2$-boundedness of the Cauchy integral operator on Lipschitz curves. The operator theory has a counterpart in Fourier multiplier theory, as well as a counterpart in functional calculus of the differential operator 1/i d/dz on the curves.
LA - eng
KW - singular integrals; Fourier multipliers; Cauchy integral operator; Lipschitz curves
UR - http://eudml.org/doc/216389
ER -

References

top
  1. [CM1] R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón's theorem, and analysis on Lipschitz curves, in: Lecture Notes in Math. 779, Springer, 1980, 104-122. 
  2. [CM2] R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). Zbl0483.35082
  3. [CMcM] R. Coifman, A. McIntosh et Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes, Ann. of Math. 116 (1982), 361-387. 
  4. [D] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. 17 (1984), 157-189. Zbl0537.42016
  5. [DJS] G. David, J. L. Journé et S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56. Zbl0604.42014
  6. [FJR] E. B. Fabes, M. Jodeit, Jr. and N. M. Rivière, Potential techniques for boundary value problems on C 1 domains, Acta Math. 141 (1978), 165-186. Zbl0402.31009
  7. [GQW] G. Gaudry, T. Qian and S.-L. Wang, Boundedness of singular integral operators with holomorphic kernels on star-shaped Lipschitz curves, Colloq. Math. 70 (1996), 133-150. Zbl0860.42013
  8. [LMcQ] C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Rev. Mat. Iberoamericana 10 (1994), 665-721. Zbl0817.42008
  9. [LMcS] C. Li, A. McIntosh and S. Semmes, Convolution singular integral operators on Lipschitz surfaces, J. Amer. Math. Soc. 5 (1992), 455-481. Zbl0763.42009
  10. [Mc] A. McIntosh, Operators which have an H -functional calculus, in: Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ. 14, Canberra, 1986, 210-231. 
  11. [McQ1] A. McIntosh and T. Qian, Convolution singular integral operators on Lipschitz curves, in: Lecture Notes in Math. 1494, Springer, 1991, 142-162. Zbl0791.42012
  12. [McQ2] A. McIntosh and T. Qian, Singular integrals along Lipschitz curves with holomorphic kernels, Approx. Theory Appl. 6 (1990), 40-57. Zbl0737.42017
  13. [McQ3] A. McIntosh and T. Qian, Fourier multipliers on Lipschitz curves, Trans. Amer. Math. Soc. 333 (1992), 157-176. Zbl0766.42005
  14. [Q1] T. Qian, Singular integrals on the m-torus and its Lipschitz perturbations, in: Clifford Algebras in Analysis and Related Topics, Stud. Adv. Math., CRC Press, Boca Raton, Fla., 1995, 94-108. 
  15. [Q2] T. Qian, Transference from Lipschitz graphs to periodic Lipschitz graphs, in: Miniconference on Analysis and Applications (Brisbane, 1993), Proc. Centre Math. Appl. Austral. Nat. Univ. 33, Canberra, 1994, 189-194. 
  16. [Q3] T. Qian, Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space, preprint. 
  17. [Q4] T. Qian, A holomorphic extension result, Complex Variables Theory Appl. 32 (1996), 59-77. 
  18. [Q5] T. Qian, Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space and generalizations to n , in: Proc. Conf. on Clifford and Quaternionic Analysis and Numerical Methods, June 1996, to appear. 
  19. [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
  20. [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. 
  21. [V] G. Verchota, Layer potentials and regularity for the Dirichlet problems for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), 572-611. Zbl0589.31005
  22. [Z] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, London and New York, 1968. Zbl0157.38204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.