# Cyclic approximation of analytic cocycles over irrational rotations

Colloquium Mathematicum (1996)

- Volume: 70, Issue: 1, page 73-78
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topIwanik, A.. "Cyclic approximation of analytic cocycles over irrational rotations." Colloquium Mathematicum 70.1 (1996): 73-78. <http://eudml.org/doc/210397>.

@article{Iwanik1996,

author = {Iwanik, A.},

journal = {Colloquium Mathematicum},

keywords = {real-analytic cocycle; cyclic approximation; Anzai skew product; weakly mixing cocycle; irrational rotations; cyclic approximations; weakly mixing cocycles},

language = {eng},

number = {1},

pages = {73-78},

title = {Cyclic approximation of analytic cocycles over irrational rotations},

url = {http://eudml.org/doc/210397},

volume = {70},

year = {1996},

}

TY - JOUR

AU - Iwanik, A.

TI - Cyclic approximation of analytic cocycles over irrational rotations

JO - Colloquium Mathematicum

PY - 1996

VL - 70

IS - 1

SP - 73

EP - 78

LA - eng

KW - real-analytic cocycle; cyclic approximation; Anzai skew product; weakly mixing cocycle; irrational rotations; cyclic approximations; weakly mixing cocycles

UR - http://eudml.org/doc/210397

ER -

## References

top- [A] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99.
- [BL] F. Blanchard and M. Lemańczyk, Measure-preserving diffeomorphisms with an arbitrary spectral multiplicity, Topol. Methods Nonlinear Anal. 1 (1993), 275-294.
- [CFS] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1982.
- [I] A. Iwanik, Generic smooth cocycles of degree zero over irrational rotations, Studia Math., to appear.
- [IS] A. Iwanik and J. Serafin, Most monothetic extensions are rank-$1$, Colloq. Math. 66 (1993), 63-76.
- [K] A. Katok, Constructions in ergodic theory, unpublished lecture notes.
- [KLR] J. Kwiatkowski, M. Lemańczyk and D. Rudolph, A class of cocycles having an analytic coboundary modification, Israel J. Math. 87 (1994), 337-360.
- [R] A. Robinson, Non-abelian extensions have nonsimple spectrum, Composito Math. 65 (1988), 155-170.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.