Non-abelian extensions have nonsimple spectrum
Compositio Mathematica (1988)
- Volume: 65, Issue: 2, page 155-170
- ISSN: 0010-437X
Access Full Article
topHow to cite
topRobinson, E. Arthur. "Non-abelian extensions have nonsimple spectrum." Compositio Mathematica 65.2 (1988): 155-170. <http://eudml.org/doc/89886>.
@article{Robinson1988,
author = {Robinson, E. Arthur},
journal = {Compositio Mathematica},
keywords = {group extension; ergodic measure preserving transformations; maximal spectral multiplicity; non-simple spectrum; Abelian extensions},
language = {eng},
number = {2},
pages = {155-170},
publisher = {Kluwer Academic Publishers},
title = {Non-abelian extensions have nonsimple spectrum},
url = {http://eudml.org/doc/89886},
volume = {65},
year = {1988},
}
TY - JOUR
AU - Robinson, E. Arthur
TI - Non-abelian extensions have nonsimple spectrum
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 65
IS - 2
SP - 155
EP - 170
LA - eng
KW - group extension; ergodic measure preserving transformations; maximal spectral multiplicity; non-simple spectrum; Abelian extensions
UR - http://eudml.org/doc/89886
ER -
References
top- [BFK] M. Brin, J. Feldman and A. Katok, Bernoulli diffeomorphisms and group extensions of dynamical systems with non-zero characteristic exponents, Annals of Math.113 (1981) 159-179. Zbl0477.58021MR604045
- [C] R. Chacon, Approximation and spectral multiplicity, Lect. Notes in Math.160 (1970) 18-22. Zbl0212.40101MR271303
- [Fu] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math.83 (1961) 573-601. Zbl0178.38404MR133429
- [G] G. Goodson, On the spectral multiplicity of a class of finite rank transformations, Proc. Amer. Math. Soc.93 (1985) 303-306. Zbl0551.28019MR770541
- [J] A. del Junco, A transformation with simple spectrum which is not rank one, Can. J. Math.29 (1977) 655-663. Zbl0335.28010MR466489
- [K] A. Katok, Constructions in Ergodic Theory. Progress in Mathematics, Burkhauser, Boston (to appear). Zbl1030.37001MR1858535
- [KS] A. Katok and A. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nuak.22 (1967); Russian Math. Surveys22 (1967) 77-102. Zbl0172.07202MR219697
- [Ki] J. King, The comutant in the weak closure of the powers for rank-1 transformations, Ergod. Th. and Dynam. Sys. 6 (1986) 363-384. Zbl0595.47005MR863200
- [M1] G. Mackey, Unitary Group Representations in Physics, Probability and Number Theory, Benjamin/Cummings, Reading, MA (1978). Zbl0401.22001MR515581
- [M2] G. Mackey, Induced Representations of Groups and Quantum Mechanics, W.A. Benjamin, New York (1968). Zbl0174.28101MR507212
- [MwN] J. Mathew and M. Nadkarni, A measure preserving transformation whose spectrum has a Lebesgue component of multiplicity two, Bull. London Math. Soc.16 (1984) 402-406. Zbl0515.28010MR749448
- [Mo] C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc.166 (1972) 401-410. Zbl0236.22010MR302817
- [O] V. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nuak SSSR168 (1966) 402-406. Zbl0152.33404MR199347
- [P] W. Parry, Ergodic properties of transformations and flows on nilmanifolds, Amer. J. Math.91 (1969) 757-771. Zbl0183.51503MR260975
- [R1] A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Inv. Math.72 (1983) 229-314. Zbl0519.28008MR700773
- [R2] A. Robinson, Mixing and spectral multiplicity, Ergod. Th. and Dynam. Sys. 5 (1985) 617-624. Zbl0565.28013MR829862
- [R3] A. Robinson, Transformations with highly nonhomogeneous spectrum of finite multiplicity, Israel J. Math.56 (1986) 75-88. Zbl0614.28012MR879915
- [R4] A. Robinson, Ergodic properties that lift to compact abelian extensions, Proc. Amer. Math. Soc.101 (1987) (to appear). Zbl0636.28007MR915717
- [Ru1] D. Rudolph, k-Fold mixing lifts to weakly mixing isometric extensions, Ergod. Th. and Dynam. Sys.5 (1985) 445-447. Zbl0594.28015MR805841
- [Ru2] D. Rudolph, Classifying the isometric extensions of a Bernoulli shift, J. D'Analyse. Math.34 (1978) 36-60. Zbl0415.28012MR531270
- [V] W. Veech, Finite group extensions of irrational rotations, Israel J. Math.21 (1975) 240-259. Zbl0334.28014MR396913
Citations in EuDML Documents
top- A. Iwanik, Cyclic approximation of analytic cocycles over irrational rotations
- A. Iwanik, J. Serafin, Most monothetic extensions are rank-1
- A. Iwanik, Generic smooth cocycles of degree zero over irrational rotations
- G. Goodson, J. Kwiatkowski, M. Lemańczyk, P. Liardet, On the multiplicity function of ergodic group extensions of rotations
- A. Iwanik, Spectral properties of skew-product diffeomorphisms of tori
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.