Calculs de dimensions de packing
Colloquium Mathematicae (1996)
- Volume: 71, Issue: 1, page 137-148
- ISSN: 0010-1354
Access Full Article
topHow to cite
topBen Nasr, Fathi. "Calculs de dimensions de packing." Colloquium Mathematicae 71.1 (1996): 137-148. <http://eudml.org/doc/210419>.
@article{BenNasr1996,
author = {Ben Nasr, Fathi},
journal = {Colloquium Mathematicae},
keywords = {multifractal; dimension; packing; packing dimension},
language = {fre},
number = {1},
pages = {137-148},
title = {Calculs de dimensions de packing},
url = {http://eudml.org/doc/210419},
volume = {71},
year = {1996},
}
TY - JOUR
AU - Ben Nasr, Fathi
TI - Calculs de dimensions de packing
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 1
SP - 137
EP - 148
LA - fre
KW - multifractal; dimension; packing; packing dimension
UR - http://eudml.org/doc/210419
ER -
References
top- [1] T. Bedford, Hausdorff dimension and box dimension in self-similar sets, Proc. Conf. Topology and Measure V (Binz, 1987), Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Greifswald, 1988, 17-26. Zbl0743.54020
- [2] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. Zbl0141.16702
- [3] G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys. 66 (1992), 775-790. Zbl0892.28006
- [4] B. Mandelbrot, Multifractal measures, especially for the geophysicist, in: Fractals in Geophysics, Birkhäuser, Basel, 1989, 5-42.
- [5] B. Mandelbrot, A class of multinomial multifractal measures with negative latent value for the dimension , Fractals’ Physical Origin and Properties (Erice, 1988), L. Pietro- nero (ed.), Plenum, New York, 1989, 3-29.
- [6] B. Mandelbrot, Two meanings of multifractality, and the notion of negative fractal dimension, in: Soviet-American Chaos Meeting (Woods Hole, 1989), K. Ford and D. Campbell (eds.), Amer. Inst. Phys., 1990, 79-90.
- [7] B. Mandelbrot, Limit lognormal multifractal measures, in: Frontiers of Physics: Landau Memorial Conference (Tel Aviv, 1988), E. Gotsman (ed.), Pergamon, New York, 1989, 91-122.
- [8] B. Mandelbrot, New ’anomalous’ multiplicative multifractals: left sided and the modeling of DLA, Phys. A 168 (1990), 95-111.
- [9] B. Mandelbrot, C. J. G. Evertsz and Y. Hayakawa, Exactly self-similar 'left-sided' multifractal measures, Phys. Rev. A, to appear. Zbl0850.28004
- [10] L. Olsen, A multifractal formalism, Adv. in Math. 116 (1995), 82-196. Zbl0841.28012
- [11] J. Peyrière, Multifractal measures, in: Probabilistic and Stochastic Methods in Analysis, with Applications (Il Ciocco, 1991), J. Byrnes (ed.), Kluwer Acad. Publ., 1992, 175-186.
- [12] C. Tricot, Sur la classification des ensembles boréliens de mesure de Lebesgue nulle, Thèse, Faculté des Sciences de l'Université de Genève, 1980.
- [13] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74. Zbl0483.28010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.