Calculs de dimensions de packing

Fathi Ben Nasr

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 1, page 137-148
  • ISSN: 0010-1354

How to cite

top

Ben Nasr, Fathi. "Calculs de dimensions de packing." Colloquium Mathematicae 71.1 (1996): 137-148. <http://eudml.org/doc/210419>.

@article{BenNasr1996,
author = {Ben Nasr, Fathi},
journal = {Colloquium Mathematicae},
keywords = {multifractal; dimension; packing; packing dimension},
language = {fre},
number = {1},
pages = {137-148},
title = {Calculs de dimensions de packing},
url = {http://eudml.org/doc/210419},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Ben Nasr, Fathi
TI - Calculs de dimensions de packing
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 1
SP - 137
EP - 148
LA - fre
KW - multifractal; dimension; packing; packing dimension
UR - http://eudml.org/doc/210419
ER -

References

top
  1. [1] T. Bedford, Hausdorff dimension and box dimension in self-similar sets, Proc. Conf. Topology and Measure V (Binz, 1987), Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Greifswald, 1988, 17-26. Zbl0743.54020
  2. [2] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. Zbl0141.16702
  3. [3] G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys. 66 (1992), 775-790. Zbl0892.28006
  4. [4] B. Mandelbrot, Multifractal measures, especially for the geophysicist, in: Fractals in Geophysics, Birkhäuser, Basel, 1989, 5-42. 
  5. [5] B. Mandelbrot, A class of multinomial multifractal measures with negative ( latent ) value for the dimension f ( α ) , Fractals’ Physical Origin and Properties (Erice, 1988), L. Pietro- nero (ed.), Plenum, New York, 1989, 3-29. 
  6. [6] B. Mandelbrot, Two meanings of multifractality, and the notion of negative fractal dimension, in: Soviet-American Chaos Meeting (Woods Hole, 1989), K. Ford and D. Campbell (eds.), Amer. Inst. Phys., 1990, 79-90. 
  7. [7] B. Mandelbrot, Limit lognormal multifractal measures, in: Frontiers of Physics: Landau Memorial Conference (Tel Aviv, 1988), E. Gotsman (ed.), Pergamon, New York, 1989, 91-122. 
  8. [8] B. Mandelbrot, New ’anomalous’ multiplicative multifractals: left sided f ( α ) and the modeling of DLA, Phys. A 168 (1990), 95-111. 
  9. [9] B. Mandelbrot, C. J. G. Evertsz and Y. Hayakawa, Exactly self-similar 'left-sided' multifractal measures, Phys. Rev. A, to appear. Zbl0850.28004
  10. [10] L. Olsen, A multifractal formalism, Adv. in Math. 116 (1995), 82-196. Zbl0841.28012
  11. [11] J. Peyrière, Multifractal measures, in: Probabilistic and Stochastic Methods in Analysis, with Applications (Il Ciocco, 1991), J. Byrnes (ed.), Kluwer Acad. Publ., 1992, 175-186. 
  12. [12] C. Tricot, Sur la classification des ensembles boréliens de mesure de Lebesgue nulle, Thèse, Faculté des Sciences de l'Université de Genève, 1980. 
  13. [13] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74. Zbl0483.28010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.