Auslander-Reiten components for concealed-canonical algebras

Hagen Meltzer

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 2, page 183-202
  • ISSN: 0010-1354

How to cite

top

Meltzer, Hagen. "Auslander-Reiten components for concealed-canonical algebras." Colloquium Mathematicae 71.2 (1996): 183-202. <http://eudml.org/doc/210434>.

@article{Meltzer1996,
author = {Meltzer, Hagen},
journal = {Colloquium Mathematicae},
keywords = {Auslander-Reiten components; finite-dimensional modules; endomorphism rings; tilting bundles; tilting sheaves; weighted projective lines; almost concealed-canonical algebras; quasi-tilted algebras; derived categories; coherent sheaves; indecomposable modules; Auslander-Reiten translation; tubes; separating families; categories of vector bundles; concealed wild algebras; preinjective components},
language = {eng},
number = {2},
pages = {183-202},
title = {Auslander-Reiten components for concealed-canonical algebras},
url = {http://eudml.org/doc/210434},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Meltzer, Hagen
TI - Auslander-Reiten components for concealed-canonical algebras
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 2
SP - 183
EP - 202
LA - eng
KW - Auslander-Reiten components; finite-dimensional modules; endomorphism rings; tilting bundles; tilting sheaves; weighted projective lines; almost concealed-canonical algebras; quasi-tilted algebras; derived categories; coherent sheaves; indecomposable modules; Auslander-Reiten translation; tubes; separating families; categories of vector bundles; concealed wild algebras; preinjective components
UR - http://eudml.org/doc/210434
ER -

References

top
  1. [1] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297. Zbl0651.14006
  2. [2] W. Geigle and H. Lenzing, - Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343. 
  3. [3] D. Happel, I. Reiten and S. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). Zbl0849.16011
  4. [4] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. Zbl0503.16024
  5. [5] M. Hoshino, On splitting torsion theories induced by tilting modules, Comm. Algebra 11 (1983), 493-500. 
  6. [6] T. Hübner and H. Lenzing, Categories perpendicular to exceptional bundles, preprint, 1993. 
  7. [7] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. Zbl0675.16013
  8. [8] O. Kerner, Stable components of wild tilted algebras, J. Algebra 142 (1991), 37-57. Zbl0737.16007
  9. [9] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one and representations of a tubular algebra, in: Representations of Algebras, Sixth International Conference, Ottawa 1992, CMS Conf. Proc. 14, 1993, 317-337. Zbl0809.16012
  10. [10] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Proceedings of the Seventh International Conference on Representations of Algebras, Cocoyoc, Mexico, 1994, CMS Conf. Proc. 18, 1996, 455-473. Zbl0863.16013
  11. [11] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., to appear. 
  12. [12] C. M. Ringel, Finite dimensional algebras of wild representation type, Math. Z. 161 (1978), 235-255. Zbl0415.16023
  13. [13] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  14. [14] H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66. Zbl0746.16009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.