Quasi-tilted algebras of canonical type

Helmut Lenzing; Andrzej Skowroński

Colloquium Mathematicae (1996)

  • Volume: 71, Issue: 2, page 161-181
  • ISSN: 0010-1354

How to cite

top

Lenzing, Helmut, and Skowroński, Andrzej. "Quasi-tilted algebras of canonical type." Colloquium Mathematicae 71.2 (1996): 161-181. <http://eudml.org/doc/210433>.

@article{Lenzing1996,
author = {Lenzing, Helmut, Skowroński, Andrzej},
journal = {Colloquium Mathematicae},
keywords = {finite dimensional algebras; hereditary Abelian categories; quasitilted algebras of canonical type; categories of coherent sheaves; tilting objects; endomorphism rings; sincere separating families of semiregular standard tubes; Auslander-Reiten components; tame representation type},
language = {eng},
number = {2},
pages = {161-181},
title = {Quasi-tilted algebras of canonical type},
url = {http://eudml.org/doc/210433},
volume = {71},
year = {1996},
}

TY - JOUR
AU - Lenzing, Helmut
AU - Skowroński, Andrzej
TI - Quasi-tilted algebras of canonical type
JO - Colloquium Mathematicae
PY - 1996
VL - 71
IS - 2
SP - 161
EP - 181
LA - eng
KW - finite dimensional algebras; hereditary Abelian categories; quasitilted algebras of canonical type; categories of coherent sheaves; tilting objects; endomorphism rings; sincere separating families of semiregular standard tubes; Auslander-Reiten components; tame representation type
UR - http://eudml.org/doc/210433
ER -

References

top
  1. [1] I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463. Zbl0617.16017
  2. [2] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414-452. Zbl0084.17305
  3. [3] F. U. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc., to appear. 
  4. [4] F. U. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82. Zbl0848.16012
  5. [5] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297. Zbl0651.14006
  6. [6] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343. 
  7. [7] D. Happel, Triangulated Categories and the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge University Press, Cambridge, 1988. 
  8. [8] D. Happel, I. Reiten and S. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). Zbl0849.16011
  9. [9] D. Happel and C. M. Ringel, Tilted agebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. 
  10. [10] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. Zbl0675.16013
  11. [11] O. Kerner, Stable components of wild tilted algebras, J. Algebra 142 (1991), 37-57. Zbl0737.16007
  12. [12] H. Lenzing, Wild canonical algebras and rings of automorphic forms, in: V. Dlab and L. L. Scott (eds.), Finite Dimensional Algebras and Related Topics, NATO Adv. Sci. Inst. Ser. C 424, Springer, 1994, 191-212. Zbl0895.16004
  13. [13] H. Lenzing, Hereditary noetherian categories with a tilting complex, preprint, 1994. 
  14. [14] H. Lenzing, A K-theoretic study of canonical algebras, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 433-454. Zbl0859.16009
  15. [15] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in Representations of Algebras, Sixth International Conference, Ottawa 1992, CMS Conf. Proc. 14, 1993, 313-337. Zbl0809.16012
  16. [16] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 455-473. Zbl0863.16013
  17. [17] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., to appear. 
  18. [18] H. Lenzing and J. A. de la Pe na, Concealed-canonical algebras and separating tubular families, preprint, 1995. 
  19. [19] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416. Zbl0818.16015
  20. [20] H. Meltzer, Auslander-Reiten components for concealed-canonical algebras, this issue, 183-202. Zbl0923.16016
  21. [21] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  22. [22] A. Skowroński, Tame quasi-tilted algebras, preprint, 1996. Zbl0908.16013
  23. [23] A. Skowroński, On omnipresent tubular families of modules, in: Representations of Algebras, Seventh International Conference, Cocoyoc (Mexico) 1994, CMS Conf. Proc. 18, 1996, 641-657. Zbl0865.16013
  24. [24] H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66. Zbl0746.16009

Citations in EuDML Documents

top
  1. Dieter Happel, Inger Slungård, On quasitilted algebras which are one-point extensions of hereditary algebras
  2. Andrzej Skowroński, On artin algebras with almost all indecomposable modules of projective or injective dimension at most one
  3. Flávio Coelho, Directing components for quasitilted algebras
  4. Thomas Hübner, Rank additivity for quasi-tilted algebras of canonical type
  5. Helmut Lenzing, Idun Reiten, Additive functions for quivers with relations
  6. Piotr Malicki, José Peña, Andrzej Skowroński, On the number of terms in the middle of almost split sequences over cycle-finite artin algebras
  7. Andrzej Skowroński, Grzegorz Zwara, Degenerations for indecomposable modules and tame algebras

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.