A structure theorem for sets of lengths

Alfred Geroldinger

Colloquium Mathematicae (1998)

  • Volume: 78, Issue: 2, page 225-259
  • ISSN: 0010-1354

How to cite


Geroldinger, Alfred. "A structure theorem for sets of lengths." Colloquium Mathematicae 78.2 (1998): 225-259. <http://eudml.org/doc/210612>.

author = {Geroldinger, Alfred},
journal = {Colloquium Mathematicae},
keywords = {lengths of factorization; monoids; sumsets; Krull domains},
language = {eng},
number = {2},
pages = {225-259},
title = {A structure theorem for sets of lengths},
url = {http://eudml.org/doc/210612},
volume = {78},
year = {1998},

AU - Geroldinger, Alfred
TI - A structure theorem for sets of lengths
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 2
SP - 225
EP - 259
LA - eng
KW - lengths of factorization; monoids; sumsets; Krull domains
UR - http://eudml.org/doc/210612
ER -


  1. [An] D. D. Anderson (ed.), Factorization in Integral Domains, Lecture Notes in Pure and Appl. Math. 189, Marcel Dekker, 1997. 
  2. [A-M-Z] D. D. Anderson, J. L. Mott and M. Zafrullah, Finite character representations for integral domains, Boll. Un. Mat. Ital. B (7) 6 (1992), 613-630. Zbl0773.13004
  3. [Bo] N. Bourbaki, Commutative Algebra, Springer, 1989. 
  4. [Cha-Ge] S. Chapman and A. Geroldinger, Krull domains and monoids, their sets of lengths and associated combinatorial problems, in: [An], 73-112. Zbl0897.13001
  5. [Ge1] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505-529. 
  6. [Ge2] A. Geroldinger, Chains of factorizations in weakly Krull domains, Colloq. Math. 72 (1997), 53-81. Zbl0874.13001
  7. [Ge3] A. Geroldinger, Chains of factorizations and sets of lengths, J. Algebra 188 (1997), 331-362. Zbl0882.20039
  8. [Ge4] A. Geroldinger, The catenary degree and tameness of factorizations in weakly Krull domains, in: [An], 113-153. Zbl0897.13002
  9. [Ge5] A. Geroldinger, On the structure and arithmetic of finitely primary monoids, Czechoslovak Math. J. 46 (1996), 677-695. Zbl0879.20032
  10. [Ge6] A. Geroldinger, T-block monoids and their arithmetical applications to certain integral domains, Comm. Algebra 22 (1994), 1603-1615. Zbl0809.13013
  11. [G-L] A. Geroldinger and G. Lettl, Factorization problems in semigroups, Semigroup Forum 40 (1990), 23-38. Zbl0693.20063
  12. [Gi] R. Gilmer, Commutative Semigroup Rings, The University of Chicago Press, 1984. 
  13. [HK1] F. Halter-Koch, Über Längen nicht-eindeutiger Faktorisierungen und Systeme linearer diophantischer Ungleichungen, Abh. Math. Sem. Univ. Hamburg 63 (1993), 265 -276. 
  14. [HK2] F. Halter-Koch, Finitely generated monoids, finitely primary monoids and factorization properties of integral domains, in: [An], 31-72. Zbl0882.13027
  15. [HK3] F. Halter-Koch, The integral closure of a finitely generated monoid and the Frobenius problem in higher dimensions, in: Semigroups, C. Bonzini, A. Cherubini and C. Tibiletti (eds.), World Scientific, 1993, 86-93. Zbl0818.20079
  16. [HK4] F. Halter-Koch, Finiteness theorems for factorizations, Semigroup Forum 44 (1992), 112-117. Zbl0751.20046
  17. [HK5] F. Halter-Koch, Divisor theories with primary elements and weakly Krull domains, Boll. Un. Mat. Ital. B (7) 9 (1995), 417-441. Zbl0849.20041
  18. [HK6] F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral domains, J. Théor. Nombres Bordeaux 7 (1995), 367-385. Zbl0844.11068
  19. [Ka] F. Kainrath, Factorization in Krull monoids with infinite class group. Zbl0936.20050
  20. [Na1] W. Narkiewicz, Finite abelian groups and factorization problems, Colloq. Math. 42 (1979), 319-330. Zbl0514.12004
  21. [Sc] H. Scheid, Zahlentheorie, 2. Auflage, B.I. Wissenschaftsverlag, 1994. 
  22. [Sl] J. Śliwa, Remarks on factorizations in algebraic number fields, Colloq. Math. 46 (1982), 123-130. Zbl0514.12005
  23. [Wa] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer, 1997. Zbl0966.11047

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.