On rings whose flat modules form a Grothendieck category
Colloquium Mathematicae (1997)
- Volume: 73, Issue: 1, page 115-141
- ISSN: 0010-1354
Access Full Article
topHow to cite
topGarcia, J., and Simson, D.. "On rings whose flat modules form a Grothendieck category." Colloquium Mathematicae 73.1 (1997): 115-141. <http://eudml.org/doc/210472>.
@article{Garcia1997,
author = {Garcia, J., Simson, D.},
journal = {Colloquium Mathematicae},
keywords = {flat modules; FTF rings; locally finitely presented Grothendieck categories; rings of finite representation type; torsion theories; functor rings; right panoramic rings; Morita equivalences; primitive orthogonal idempotents},
language = {eng},
number = {1},
pages = {115-141},
title = {On rings whose flat modules form a Grothendieck category},
url = {http://eudml.org/doc/210472},
volume = {73},
year = {1997},
}
TY - JOUR
AU - Garcia, J.
AU - Simson, D.
TI - On rings whose flat modules form a Grothendieck category
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 1
SP - 115
EP - 141
LA - eng
KW - flat modules; FTF rings; locally finitely presented Grothendieck categories; rings of finite representation type; torsion theories; functor rings; right panoramic rings; Morita equivalences; primitive orthogonal idempotents
UR - http://eudml.org/doc/210472
ER -
References
top- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York, 1992. Zbl0765.16001
- [2] P. N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987), 1-16. Zbl0627.16031
- [3] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995. Zbl0834.16001
- [4] K. R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 115-135. Zbl0325.16024
- [5] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. Zbl0201.35602
- [6] J. L. García and J. Martínez, Purity through Gabriel's functor rings, Bull. Soc. Math. Belgique 45 (1993), 137-152. Zbl0804.18008
- [7] J. L. García and J. Martínez, When is the category of flat modules abelian?, Fund. Math. 147 (1995), 83-91. Zbl0843.16002
- [8] J. L. García and J. J. Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra 76 (1991), 39-56. Zbl0747.16007
- [9] J. Gómez Torrecillas, Rings whose flat modules are torsionfree, Ph.D. Thesis, University of Granada, 1992.
- [10] J. Gómez Torrecillas, FTF rings, preprint.
- [11] J. Gómez Torrecillas and B. Torrecillas, Flat torsionfree modules and QF-3 rings, Osaka J. Math. 30 (1993), 529-542. Zbl0803.16031
- [12] M. Hoshino and S. Takashima, On Lambek torsion theories II, ibid. 31 (1994), 729-746. Zbl0823.16020
- [13] C. U. Jensen and H. Lenzing, Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules, Algebra Logic Appl. 2, Gordon & Breach, 1989.
- [14] C. U. Jensen and D. Simson, Purity and generalized chain conditions, J. Pure Appl. Algebra 14 (1979), 297-305. Zbl0407.18003
- [15] S. Jøndrup and D. Simson, Indecomposable modules over semiperfect rings, J. Algebra 73 (1981), 23-29. Zbl0496.16033
- [16] M. G. Leeney, LLI rings and modules of type LP, Comm. Algebra 20 (1992), 943-953. Zbl0757.16002
- [17] L. H. Rowen, Finitely presented modules over semiperfect rings, Proc. Amer. Math. Soc. 97 (1986), 1-7. Zbl0596.16020
- [18] L. H. Rowen, Finitely presented modules over semiperfect rings satisfying ACC-∞, J. Algebra 107 (1987), 284-291. Zbl0615.16016
- [19] D. Simson, Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 375-380. Zbl0328.18005
- [20] D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), 91-116. Zbl0361.18010
- [21] D. Simson, On pure semisimple Grothendieck categories I, ibid. 100 (1978), 211-222. Zbl0392.18012
- [22] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, 1992. Zbl0818.16009
- [23] J. P. Soublin, Anneaux et modules cohérents, J. Algebra 15 (1970), 455-472. Zbl0198.35803
- [24] B. Stenström, Rings of Quotients, Springer, Berlin, 1975.
- [25] H. Tachikawa, QF-3 rings and categories of projective modules, J. Algebra 28 (1974), 408-413. Zbl0281.16009
- [26] R. Wisbauer, Foundations of Module and Ring Theory, Algebra Logic Appl. 3, Gordon & Breach, 1991.
- [27] K. Yamagata, Frobenius algebras, in: Handbook of Algebra, M. Hazewinkel, (ed.), Vol. 1, North-Holland, Amsterdam, 1996, 841-887. Zbl0879.16008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.