On rings whose flat modules form a Grothendieck category

J. Garcia; D. Simson

Colloquium Mathematicae (1997)

  • Volume: 73, Issue: 1, page 115-141
  • ISSN: 0010-1354

How to cite

top

Garcia, J., and Simson, D.. "On rings whose flat modules form a Grothendieck category." Colloquium Mathematicae 73.1 (1997): 115-141. <http://eudml.org/doc/210472>.

@article{Garcia1997,
author = {Garcia, J., Simson, D.},
journal = {Colloquium Mathematicae},
keywords = {flat modules; FTF rings; locally finitely presented Grothendieck categories; rings of finite representation type; torsion theories; functor rings; right panoramic rings; Morita equivalences; primitive orthogonal idempotents},
language = {eng},
number = {1},
pages = {115-141},
title = {On rings whose flat modules form a Grothendieck category},
url = {http://eudml.org/doc/210472},
volume = {73},
year = {1997},
}

TY - JOUR
AU - Garcia, J.
AU - Simson, D.
TI - On rings whose flat modules form a Grothendieck category
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 1
SP - 115
EP - 141
LA - eng
KW - flat modules; FTF rings; locally finitely presented Grothendieck categories; rings of finite representation type; torsion theories; functor rings; right panoramic rings; Morita equivalences; primitive orthogonal idempotents
UR - http://eudml.org/doc/210472
ER -

References

top
  1. [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York, 1992. Zbl0765.16001
  2. [2] P. N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987), 1-16. Zbl0627.16031
  3. [3] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995. Zbl0834.16001
  4. [4] K. R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 115-135. Zbl0325.16024
  5. [5] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. Zbl0201.35602
  6. [6] J. L. García and J. Martínez, Purity through Gabriel's functor rings, Bull. Soc. Math. Belgique 45 (1993), 137-152. Zbl0804.18008
  7. [7] J. L. García and J. Martínez, When is the category of flat modules abelian?, Fund. Math. 147 (1995), 83-91. Zbl0843.16002
  8. [8] J. L. García and J. J. Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra 76 (1991), 39-56. Zbl0747.16007
  9. [9] J. Gómez Torrecillas, Rings whose flat modules are torsionfree, Ph.D. Thesis, University of Granada, 1992. 
  10. [10] J. Gómez Torrecillas, FTF rings, preprint. 
  11. [11] J. Gómez Torrecillas and B. Torrecillas, Flat torsionfree modules and QF-3 rings, Osaka J. Math. 30 (1993), 529-542. Zbl0803.16031
  12. [12] M. Hoshino and S. Takashima, On Lambek torsion theories II, ibid. 31 (1994), 729-746. Zbl0823.16020
  13. [13] C. U. Jensen and H. Lenzing, Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules, Algebra Logic Appl. 2, Gordon & Breach, 1989. 
  14. [14] C. U. Jensen and D. Simson, Purity and generalized chain conditions, J. Pure Appl. Algebra 14 (1979), 297-305. Zbl0407.18003
  15. [15] S. Jøndrup and D. Simson, Indecomposable modules over semiperfect rings, J. Algebra 73 (1981), 23-29. Zbl0496.16033
  16. [16] M. G. Leeney, LLI rings and modules of type LP, Comm. Algebra 20 (1992), 943-953. Zbl0757.16002
  17. [17] L. H. Rowen, Finitely presented modules over semiperfect rings, Proc. Amer. Math. Soc. 97 (1986), 1-7. Zbl0596.16020
  18. [18] L. H. Rowen, Finitely presented modules over semiperfect rings satisfying ACC-∞, J. Algebra 107 (1987), 284-291. Zbl0615.16016
  19. [19] D. Simson, Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 375-380. Zbl0328.18005
  20. [20] D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), 91-116. Zbl0361.18010
  21. [21] D. Simson, On pure semisimple Grothendieck categories I, ibid. 100 (1978), 211-222. Zbl0392.18012
  22. [22] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, 1992. Zbl0818.16009
  23. [23] J. P. Soublin, Anneaux et modules cohérents, J. Algebra 15 (1970), 455-472. Zbl0198.35803
  24. [24] B. Stenström, Rings of Quotients, Springer, Berlin, 1975. 
  25. [25] H. Tachikawa, QF-3 rings and categories of projective modules, J. Algebra 28 (1974), 408-413. Zbl0281.16009
  26. [26] R. Wisbauer, Foundations of Module and Ring Theory, Algebra Logic Appl. 3, Gordon & Breach, 1991. 
  27. [27] K. Yamagata, Frobenius algebras, in: Handbook of Algebra, M. Hazewinkel, (ed.), Vol. 1, North-Holland, Amsterdam, 1996, 841-887. Zbl0879.16008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.