When is the category of flat modules abelian?

J. García; J. Martínez Hernández

Fundamenta Mathematicae (1995)

  • Volume: 147, Issue: 1, page 83-91
  • ISSN: 0016-2736

Abstract

top
Let Fl(R) denote the category of flat right modules over an associative ring R. We find necessary and sufficient conditions for Fl(R) to be a Grothendieck category, in terms of properties of the ring R.

How to cite

top

García, J., and Martínez Hernández, J.. "When is the category of flat modules abelian?." Fundamenta Mathematicae 147.1 (1995): 83-91. <http://eudml.org/doc/212076>.

@article{García1995,
abstract = {Let Fl(R) denote the category of flat right modules over an associative ring R. We find necessary and sufficient conditions for Fl(R) to be a Grothendieck category, in terms of properties of the ring R.},
author = {García, J., Martínez Hernández, J.},
journal = {Fundamenta Mathematicae},
keywords = {Abelian categories; coherent rings; Grothendieck categories; flat modules; Lambek torsion theory; minimal injective resolutions; flat-dominant dimension; weak global dimension; FTF-rings},
language = {eng},
number = {1},
pages = {83-91},
title = {When is the category of flat modules abelian?},
url = {http://eudml.org/doc/212076},
volume = {147},
year = {1995},
}

TY - JOUR
AU - García, J.
AU - Martínez Hernández, J.
TI - When is the category of flat modules abelian?
JO - Fundamenta Mathematicae
PY - 1995
VL - 147
IS - 1
SP - 83
EP - 91
AB - Let Fl(R) denote the category of flat right modules over an associative ring R. We find necessary and sufficient conditions for Fl(R) to be a Grothendieck category, in terms of properties of the ring R.
LA - eng
KW - Abelian categories; coherent rings; Grothendieck categories; flat modules; Lambek torsion theory; minimal injective resolutions; flat-dominant dimension; weak global dimension; FTF-rings
UR - http://eudml.org/doc/212076
ER -

References

top
  1. [1] J. Asensio Mayor and J. Martínez Hernández, On flat and projective envelopes, J. Algebra 160 (1993), 434-440. Zbl0802.16003
  2. [2] M. Auslander, Large modules over artin algebras, in: Algebra, Topology and Category Theory, Academic Press, 1976, 3-17. 
  3. [3] R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239-252. Zbl0306.16015
  4. [4] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189-209. Zbl0464.16019
  5. [5] K. R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 39-44. Zbl0325.16024
  6. [6] J. L. García and J. Martínez Hernández, Purity through Gabriel's functor rings, Bull. Soc. Math. Belgique 45 (1993), 137-152. Zbl0804.18008
  7. [7] J. Gómez Torrecillas, Anillos con módulos planos libres de torsión, Ph.D. Thesis, University of Granada, 1992. 
  8. [8] J. Gómez Torrecillas and B. Torrecillas, Flat torsionfree modules and QF-3 rings, Osaka J. Math. 30 (1993), 529-542. Zbl0803.16031
  9. [9] M. Hoshino, On dominant dimension of Noetherian rings, Osaka J. Math. 26 (1989), 275-280. Zbl0701.16008
  10. [10] S. Jøndrup and D. Simson, Indecomposable modules over semiperfect rings, J. Algebra 73 (1981), 23-29. Zbl0496.16033
  11. [11] M. F. Jones, Coherence relative to an hereditary torsion theory, Comm. Algebra 10 (1982), 719-739. Zbl0483.16027
  12. [12] R. W. Miller and M. L. Teply, On flatness relative to a torsion theory, ibid. 6 (1978), 1037-1071. Zbl0381.16012
  13. [13] A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z. 70 (1959), 372-380. Zbl0084.26505
  14. [14] D. Simson, Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. 22 (1974), 375-380. Zbl0328.18005
  15. [15] D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), 91-116. Zbl0361.18010
  16. [16] B. Stenström, Rings of Quotients, Springer, Berlin, 1975. 
  17. [17] H. Tachikawa, QF-3 rings and categories of projective modules, J. Algebra 28 (1974), 408-413. Zbl0281.16009
  18. [18] W. V. Vasconcelos, The Rings of Dimension Two, Marcel Dekker, New York, 1975. Zbl0324.13013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.