On compact symplectic and Kählerian solvmanifolds which are not completely solvable

Aleksy Tralle

Colloquium Mathematicae (1997)

  • Volume: 73, Issue: 2, page 261-283
  • ISSN: 0010-1354

Abstract

top
We are interested in the problem of describing compact solvmanifolds admitting symplectic and Kählerian structures. This was first considered in [3, 4] and [7]. These papers used the Hattori theorem concerning the cohomology of solvmanifolds hence the results obtained covered only the completely solvable case}. Our results do not use the assumption of complete solvability. We apply our methods to construct a new example of a compact symplectic non-Kählerian solvmanifold.

How to cite

top

Tralle, Aleksy. "On compact symplectic and Kählerian solvmanifolds which are not completely solvable." Colloquium Mathematicae 73.2 (1997): 261-283. <http://eudml.org/doc/210490>.

@article{Tralle1997,
abstract = {We are interested in the problem of describing compact solvmanifolds admitting symplectic and Kählerian structures. This was first considered in [3, 4] and [7]. These papers used the Hattori theorem concerning the cohomology of solvmanifolds hence the results obtained covered only the completely solvable case\}. Our results do not use the assumption of complete solvability. We apply our methods to construct a new example of a compact symplectic non-Kählerian solvmanifold.},
author = {Tralle, Aleksy},
journal = {Colloquium Mathematicae},
keywords = {Kähler structure; symplectic structure; solvmanifold; compact solvmanifolds; Kählerian structure; cohomology},
language = {eng},
number = {2},
pages = {261-283},
title = {On compact symplectic and Kählerian solvmanifolds which are not completely solvable},
url = {http://eudml.org/doc/210490},
volume = {73},
year = {1997},
}

TY - JOUR
AU - Tralle, Aleksy
TI - On compact symplectic and Kählerian solvmanifolds which are not completely solvable
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 2
SP - 261
EP - 283
AB - We are interested in the problem of describing compact solvmanifolds admitting symplectic and Kählerian structures. This was first considered in [3, 4] and [7]. These papers used the Hattori theorem concerning the cohomology of solvmanifolds hence the results obtained covered only the completely solvable case}. Our results do not use the assumption of complete solvability. We apply our methods to construct a new example of a compact symplectic non-Kählerian solvmanifold.
LA - eng
KW - Kähler structure; symplectic structure; solvmanifold; compact solvmanifolds; Kählerian structure; cohomology
UR - http://eudml.org/doc/210490
ER -

References

top
  1. [1] E. Abbena, An example of an almost Kähler manifold which is not Kählerian, Boll. Un. Mat. Ital. (6) 3-A (1984), 383-392. Zbl0559.53023
  2. [2] L. Auslander, An exposition of the structure of solvmanifolds, Bull. Amer. Math. Soc. 79 (1973), 227-285. Zbl0265.22016
  3. [3] C. Benson and C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. Zbl0672.53036
  4. [4] C. Benson and C. S. Gordon, Kähler structures on compact solvmanifolds, Proc. Amer. Math. Soc. 108 (1990), 971-980. Zbl0689.53036
  5. [5] L. A. Cordero, M. Fernandez and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. Zbl0596.53030
  6. [6] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. Zbl0312.55011
  7. [7] M. Fernández, M. de León and M. Saralegui, A six-dimensional compact symplectic solvmanifold without Kähler structures, Osaka J. Math. 33 (1996), 19-35. Zbl0861.53032
  8. [8] R. Gompf, Some new symplectic 4-manifolds, Turkish J. Math. 18 (1994), 7-15. Zbl0863.53025
  9. [9] S. Halperin, Lectures on Minimal Models, Hermann, 1982. 
  10. [10] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 67-71. Zbl0691.53040
  11. [11] A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. 1 8 (1960), 289-331. Zbl0099.18003
  12. [12] K. Hess, Twisted tensor products of DGA's and the Adams-Hilton model for the total space of a fibration, in: London Math. Soc. Lecture Note Ser. 175, Cambridge Univ. Press, 1992, 29-51. Zbl0763.55006
  13. [13] D. Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431-449. Zbl0146.19201
  14. [14] D. Lehmann, Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque 45 (1977). 
  15. [15] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. Zbl0789.55010
  16. [16] D. McDuff, Examples of symplectic simply connected manifolds with no Kähler structure, J. Differential Geom. 20 (1984), 267-277. Zbl0567.53031
  17. [17] C. McCord and J. Oprea, Rational Lusternik-Schnirelmann category and the Arnold conjecture for nilmanifolds, Topology 32 (1993), 701-717. Zbl0798.58017
  18. [18] G. D. Mostow, Factor spaces of solvable groups, Annals of Math. 60 (1954), 1-27. Zbl0057.26103
  19. [19] M. Raghunathan, Discrete Subgroups of Lie Groups, Springer, 1972. Zbl0254.22005
  20. [20] M. Schlessinger and J. Stasheff, Deformation theory and rational homotopy type, preprint (1992), 44 pp. Zbl0813.55004
  21. [21] J.-P. Serre, Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505. Zbl0045.26003
  22. [22] N. Steenrod, The Topology of Fiber Bundles, Princeton Univ. Press, 1951. Zbl0054.07103
  23. [23] D. Tanré, Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Springer, 1983. 
  24. [24] J.-C. Thomas, Homotopie rationnelle des fibrés de Serre, Université des Sciences et Techniques de Lille I, 1980. 
  25. [25] J.-C. Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier (Grenoble) 31 (3) (1981), 71-90. Zbl0446.55009
  26. [26] E. Vinberg, V. Gorbatsevich and O. Shvartsman, Discrete Subgroups of Lie Groups, Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki 21 (1988), 5-115 (in Russian). Zbl0656.22004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.