Displaying similar documents to “On compact symplectic and Kählerian solvmanifolds which are not completely solvable”

Formality theorems: from associators to a global formulation

Gilles Halbout (2006)

Annales mathématiques Blaise Pascal

Similarity:

Let M be a differential manifold. Let Φ be a Drinfeld associator. In this paper we explain how to construct a global formality morphism starting from Φ . More precisely, following Tamarkin’s proof, we construct a Lie homomorphism “up to homotopy" between the Lie algebra of Hochschild cochains on C ( M ) and its cohomology ( Γ ( M , Λ T M ) , [ - , - ] S ). This paper is an extended version of a course given 8 - 12 March 2004 on Tamarkin’s works. The reader will find explicit examples, recollections on G -structures, explanation...

Lefschetz coincidence numbers of solvmanifolds with Mostow conditions

Hisashi Kasuya (2014)

Archivum Mathematicum

Similarity:

For any two continuous maps f , g between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of f , g . This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case.

An extension of Miller's version of the de Rham Theorem with any coefficients

Antonio Garvín, Luis Lechuga, Aniceto Murillo, Vicente Muñoz, Antonio Viruel (1998)

Banach Center Publications

Similarity:

In this paper we present an approximation to the de Rham theorem for simplicial sets with any coefficients based, using simplicial techniques, on Poincaré's lemma and q-extendability.

The cohomology algebras of orientable Seifert manifolds and applications to Lusternik-Schnirelmann category

J. Bryden, P. Zvengrowski (1998)

Banach Center Publications

Similarity:

This note gives a complete description of the cohomology algebra of any orientable Seifert manifold with ℤ/p coefficients, for an arbitrary prime p. As an application, the existence of a degree one map from an orientable Seifert manifold onto a lens space is completely determined. A second application shows that the Lusternik-Schnirelmann category for a large class of Seifert manifolds is equal to 3, which in turn is used to verify the Ganea conjecture for these Seifert manifolds. ...